1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
__device__ unsigned int INNAME(lfc_retirementCount) = {0};
__global__ void INNAME(integrate_mul_kernel)(
const Tgpu *a_G, int nG,
const LFVolume_gpu *volume_W,
const int *volume_WMi_gpu,
const int *WMi_gpu,
int WMimax,
int q,
Tgpu *out, int block_out,
Tgpu *results, int Mcount, int nM, int nvec)
{
int yy = gridDim.y / Mcount;
int bloy = blockIdx.y / yy;
int block = blockIdx.y - bloy * yy;
unsigned int tid = threadIdx.x;
unsigned int gridSize = REDUCE_LFC_THREADS * gridDim.x;
unsigned int i_b = blockIdx.x * (REDUCE_LFC_THREADS) + tid;
extern __shared__ Tgpu Zgpu(sdata)[];
// perform first level of reduction,
// reading from global memory, writing to shared memory
a_G += nG * block;
for (int vv=0; vv < WMi_gpu[bloy]; vv++) {
const LFVolume_gpu *v = &volume_W[volume_WMi_gpu[bloy * WMimax
+ vv]];
int *nGBcum = v->nGBcum;
#ifdef GPU_USE_COMPLEX
Tgpu phase = v->phase_k[q];
#endif
int len_A_gm = v->len_A_gm;
Tgpu *out_t = out + v->M * block_out + block * nM * block_out;
int a_ind, ai=0, acum=0;
if (i_b < len_A_gm) {
int bi = v->nB;
int ci;
int bcum = nGBcum[bi];
int ccum;
while (bi - ai > 1) {
ci = ai + 1 + (bi - ai - 2) * (i_b - acum) / (bcum - acum);
ccum = nGBcum[ci];
if (ccum <= i_b) {
ai = ci;
acum = ccum;
} else {
bi = ci;
bcum = ccum;
}
}
a_ind = v->GB1[ai] + i_b - acum;
}
for (int i=0; i < nvec; i++) {
Tgpu a_Gv;
double *A_gm2 = v->A_gm;
Tgpu *out_t2 = out_t;
if (i_b < len_A_gm) {
#ifdef GPU_USE_COMPLEX
a_Gv = MULTT(a_G[i * nG + a_ind], phase);
#else
a_Gv = a_G[i * nG + a_ind];
#endif
}
for (int m=0; m < v->nm; m++) {
Tgpu mySum = MAKED(0);
if (i_b < len_A_gm) {
mySum = MULTD(a_Gv, A_gm2[i_b]);
}
if (len_A_gm > gridSize) {
unsigned int i_bb = i_b + gridSize;
int aai = ai;
int aacum = acum;
while (i_bb < len_A_gm) {
int bi = v->nB;
int ci;
int bcum = nGBcum[bi];
int ccum;
while (bi - aai > 1) {
ci = aai + 1 + (bi - aai - 2) * (i_bb - aacum)
/ (bcum - aacum);
ccum = nGBcum[ci];
if (ccum <= i_bb) {
aai = ci;
aacum = ccum;
} else {
bi = ci;
bcum = ccum;
}
}
#ifdef GPU_USE_COMPLEX
IADD(mySum, MULTD(MULTT(a_G[i * nG + v->GB1[aai]
+ i_bb - aacum], phase),
A_gm2[i_bb]));
#else
IADD(mySum, MULTD(a_G[i * nG + v->GB1[aai] + i_bb
- aacum],
A_gm2[i_bb]));
#endif
i_bb += gridSize;
}
}
Zgpu(sdata)[tid] = mySum;
__syncthreads();
if (REDUCE_LFC_THREADS >= 512) {
if (tid < 256) {
Zgpu(sdata)[tid] = mySum
= ADD(mySum,
Zgpu(sdata)[tid + 256]);
}
__syncthreads();
}
if (REDUCE_LFC_THREADS >= 256) {
if (tid < 128) {
Zgpu(sdata)[tid] = mySum
= ADD(mySum,
Zgpu(sdata)[tid + 128]);
}
__syncthreads();
}
if (REDUCE_LFC_THREADS >= 128) {
if (tid < 64) {
Zgpu(sdata)[tid] = mySum
= ADD(mySum,
Zgpu(sdata)[tid + 64]);
}
__syncthreads();
}
if (tid < 32) {
volatile Tgpu *smem = Zgpu(sdata);
#ifdef GPU_USE_COMPLEX
if (REDUCE_LFC_THREADS >= 64) {
smem[tid].x = mySum.x = mySum.x + smem[tid + 32].x;
smem[tid].y = mySum.y = mySum.y + smem[tid + 32].y;
}
if (REDUCE_LFC_THREADS >= 32) {
smem[tid].x = mySum.x = mySum.x + smem[tid + 16].x;
smem[tid].y = mySum.y = mySum.y + smem[tid + 16].y;
}
if (REDUCE_LFC_THREADS >= 16) {
smem[tid].x = mySum.x = mySum.x + smem[tid + 8].x;
smem[tid].y = mySum.y = mySum.y + smem[tid + 8].y;
}
if (REDUCE_LFC_THREADS >= 8) {
smem[tid].x = mySum.x = mySum.x + smem[tid + 4].x;
smem[tid].y = mySum.y = mySum.y + smem[tid + 4].y;
}
if (REDUCE_LFC_THREADS >= 4) {
smem[tid].x = mySum.x = mySum.x + smem[tid + 2].x;
smem[tid].y = mySum.y = mySum.y + smem[tid + 2].y;
}
if (REDUCE_LFC_THREADS >= 2) {
smem[tid].x = mySum.x = mySum.x + smem[tid + 1].x;
smem[tid].y = mySum.y = mySum.y + smem[tid + 1].y;
}
#else
if (REDUCE_LFC_THREADS >= 64)
smem[tid] = mySum = ADD(mySum, smem[tid + 32]);
if (REDUCE_LFC_THREADS >= 32)
smem[tid] = mySum = ADD(mySum, smem[tid + 16]);
if (REDUCE_LFC_THREADS >= 16)
smem[tid] = mySum = ADD(mySum, smem[tid + 8]);
if (REDUCE_LFC_THREADS >= 8)
smem[tid] = mySum = ADD(mySum, smem[tid + 4]);
if (REDUCE_LFC_THREADS >= 4)
smem[tid] = mySum = ADD(mySum, smem[tid + 2]);
if (REDUCE_LFC_THREADS >= 2)
smem[tid] = mySum = ADD(mySum, smem[tid + 1]);
#endif
}
// write result for this block to global mem
if (tid==0) {
if (vv==0)
out_t2[blockIdx.x] = Zgpu(sdata)[0];
else
IADD(out_t2[blockIdx.x], Zgpu(sdata)[0]);
}
A_gm2 += len_A_gm;
out_t2 += block_out;
__syncthreads();
}
out_t += nM * block_out;
}
}
if (gridDim.x==1) {
__shared__ bool amLast;
__threadfence();
if (tid == 0) {
unsigned int ticket = atomicInc(&INNAME(lfc_retirementCount),
gridDim.y);
amLast = (ticket == gridDim.y - 1);
}
__syncthreads();
if ((amLast)) {
for (int i=tid; i < nM * yy * nvec; i += blockDim.x) {
results[i] = out[i * block_out];
}
INNAME(lfc_retirementCount) = 0;
}
}
}
|