File: relax.cpp

package info (click to toggle)
gpaw 25.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 18,888 kB
  • sloc: python: 174,804; ansic: 17,564; cpp: 5,668; sh: 972; csh: 139; makefile: 45
file content (692 lines) | stat: -rw-r--r-- 22,630 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <sys/types.h>
#include <sys/time.h>

#include "../gpu.h"
#include "../gpu-complex.h"

#undef BLOCK_X
#undef BLOCK_Y
#define BLOCK_X   GPU_DEFAULT_BLOCK_X
#define BLOCK_Y   GPU_DEFAULT_BLOCK_Y

#ifdef MYJ
#define ACACHE_X  (BLOCK_X + 2 * MYJ)
#define ACACHE_Y  (BLOCK_Y + 2 * MYJ)

__global__ void RELAX_kernel(
        const int relax_method, const double coef_relax,
        const int ncoefs, const double *c_coefs,
        const long *c_offsets,
        const double *c_coefs0,
        const double *c_coefs1,
        const double *c_coefs2,
        const double* a, double* b,
        const double* src,const long3  c_n,
        const int3 a_size, const int3 b_size,
        const double w, const int xdiv)
{
    int i1tid = threadIdx.y;
    int i2tid = threadIdx.x;
    int i1, i2;
    int xlen;
    double acache0[MYJ];
    double acache0t[MYJ + 1];
    double *acache12p;
    __shared__ double s_coefs0[MYJ * 2 + 1];
    __shared__ double s_coefs1[MYJ * 2];
    __shared__ double s_coefs2[MYJ * 2];
    __shared__ double acache12[ACACHE_X * ACACHE_Y];
    {
        int xx = gridDim.x / xdiv;
        int xind = blockIdx.x / xx;

        i2 = (blockIdx.x - xind * xx) * BLOCK_X + i2tid;
        i1 = blockIdx.y * BLOCK_Y + i1tid;

        xlen = (c_n.x + xdiv - 1) / xdiv;
        int xstart = xind * xlen;
        if ((c_n.x - xstart) < xlen)
            xlen = c_n.x - xstart;

        a += xstart * a_size.y + i1 * a_size.z + i2;
        b += xstart * b_size.y + i1 * b_size.z + i2;
        src += xstart * b_size.y + i1 * b_size.z + i2;
    }

    acache12p = acache12 + ACACHE_X * (i1tid + MYJ) + i2tid + MYJ;

    if (i2tid <= MYJ * 2)
        s_coefs0[i2tid] = c_coefs0[i2tid];
    if (i2tid < MYJ * 2) {
        s_coefs1[i2tid] = c_coefs1[i2tid];
        s_coefs2[i2tid] = c_coefs2[i2tid];
    }
    __syncthreads();

    if (relax_method == 1) {
        /* Weighted Gauss-Seidel relaxation for the equation "operator" b = src
           a contains the temporary array holding also the boundary values. */

        // Coefficient needed multiple times later
        //      const double coef = 1.0/c_coefs[0];

        /* FIXME: NOT WORKIN ATM */
        return;
    } else {
        /* Weighted Jacobi relaxation for the equation "operator" b = src
           a contains the temporary array holding also the boundary values. */

        for (int c=0; c < MYJ; c++) {
            if ((i1 < c_n.y) && (i2 < c_n.z))
                acache0[c] = a[(c - MYJ) * (a_size.y)];
        }
        for (int i0=0; i0 < xlen; i0++) {
            if (i1 < c_n.y + MYJ) {
                acache12p[-MYJ] = a[-MYJ];
                if ((i2tid < MYJ * 2) && (i2 < c_n.z + MYJ - BLOCK_X + MYJ))
                    acache12p[BLOCK_X - MYJ] = a[BLOCK_X - MYJ];
            }
            if  (i1tid < MYJ) {
                acache12p[-ACACHE_X * MYJ] = a[-a_size.z * MYJ];
                if (i1 < c_n.y + MYJ - BLOCK_Y)
                    acache12p[ACACHE_X * BLOCK_Y] = a[a_size.z * BLOCK_Y];
            }
            __syncthreads();

            acache0t[0] = 0.0;
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[ACACHE_X * (c - MYJ)] * s_coefs1[c];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[c - MYJ] * s_coefs2[c];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[c + 1] * s_coefs2[c + MYJ];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[ACACHE_X * (c + 1)]
                             * s_coefs1[c + MYJ];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache0[c] * s_coefs0[c];
            for (int c=0; c < MYJ; c++)
                acache0t[c + 1] += acache12p[0] * s_coefs0[c + 1 + MYJ];
            for (int c=0; c < ncoefs; c++)
                acache0t[0] += a[c_offsets[c]] * c_coefs[c];

            if (i0 >= MYJ) {
                if ((i1 < c_n.y) && (i2 < c_n.z)) {
                    b[0] = (1.0 - w) * b[0]
                         + w * (src[0] - acache0t[MYJ]) / coef_relax;
                }
                b += b_size.y;
                src += b_size.y;
            }

            for (int c=0; c < MYJ - 1; c++) {
                acache0[c] = acache0[c + 1];
            }
            acache0[MYJ - 1] = acache12p[0];
            for (int c=MYJ;c > 0; c--) {
                acache0t[c] = acache0t[c - 1];
            }
            a += a_size.y;
            __syncthreads();
        }
#pragma unroll
        for (int i0=0; i0 < MYJ; i0++) {
            if ((i1 < c_n.y) && (i2 < c_n.z))
                acache0[0] = a[0];
            if (i0 < 1)
                acache0t[1 - i0] += acache0[0] * s_coefs0[1 + MYJ];
#if MYJ >= 2
            if (i0 < 2)
                acache0t[2 - i0] += acache0[0] * s_coefs0[2 + MYJ];
#endif
#if MYJ >= 3
            if (i0 < 3)
                acache0t[3 - i0] += acache0[0] * s_coefs0[3 + MYJ];
#endif
#if MYJ >= 4
            if (i0 < 4)
                acache0t[4 - i0] += acache0[0] * s_coefs0[4 + MYJ];
#endif
#if MYJ >= 5
            if (i0 < 5)
                acache0t[5 - i0] += acache0[0] * s_coefs0[5 + MYJ];
#endif

            if (i0 + xlen >= MYJ) {
                if ((i1 < c_n.y) && (i2 < c_n.z)) {
                    b[0] = (1.0 - w) * b[0]
                         + w * (src[0] - acache0t[MYJ - i0]) / coef_relax;
                }
                b += b_size.y;
                src += b_size.y;
            }
            a += a_size.y;
        }
    }
}

__global__ void RELAX_kernel_onlyb(
        const int relax_method, const double coef_relax,
        const int ncoefs, const double *c_coefs,
        const long *c_offsets,
        const double *c_coefs0,
        const double *c_coefs1,
        const double *c_coefs2,
        const double* a, double* b,
        const double* src, const long3 c_n,
        const int3 c_jb, const int boundary,
        const double w, const int xdiv)
{
    int xx = MAX((c_n.z + BLOCK_X - 1) / BLOCK_X, 1);
    int yy = MAX((c_n.y + BLOCK_Y - 1) / BLOCK_Y, 1);

    int ysiz = c_n.y;
    if ((boundary & GPAW_BOUNDARY_Y0) != 0)
        ysiz -= BLOCK_Y;
    if ((boundary & GPAW_BOUNDARY_Y1) != 0)
        ysiz -= BLOCK_Y;
    int yy2 = MAX((ysiz + BLOCK_Y - 1) / BLOCK_Y, 0);

    int i2bl, i1bl;
    int xlen = c_n.x;
    int xind = 0;
    int xstart = 0;
    int i1pitch = 0;
    int i2pitch = 0;
    int xmax = c_n.x;
    int ymax = c_n.y;
    int zmax = c_n.z;
    int blockix;

    blockix = blockIdx.x;

    if ((boundary & GPAW_BOUNDARY_X0) != 0) {
        if ((blockix >= 0) && (blockix < xx * yy)) {
            i1bl = blockix / xx;
            i2bl = blockix-i1bl * xx;
            xlen = c_jb.x / 2;
            xstart = 0;
        }
        blockix -= xx * yy;
    }
    if ((boundary & GPAW_BOUNDARY_X1) != 0) {
        if ((blockix >= 0) && (blockix < xx * yy)) {
            i1bl = blockix / xx;
            i2bl = blockix-i1bl * xx;
            xlen = c_jb.x / 2;
            xstart += c_n.x - c_jb.x / 2;
        }
        blockix -= xx * yy;
    }
    if (blockix >= 0) {
        if ((boundary & GPAW_BOUNDARY_Y0) != 0) {
            if ((blockix >= 0) && (blockix < xdiv * xx)) {
                xind = blockix / xx;
                i2bl = blockix - xind * xx;
                i1bl = 0;
                ymax = MIN(BLOCK_Y, ymax);
            }
            blockix -= xdiv * xx;
        }
        if ((boundary & GPAW_BOUNDARY_Y1) != 0) {
            if ((blockix >= 0) && (blockix < xdiv * xx)) {
                xind = blockix / xx;
                i2bl = blockix - xind * xx;
                i1bl = 0;
                i1pitch = MAX(c_n.y - BLOCK_Y, 0);
            }
            blockix -= xdiv * xx;
        }
        if ((boundary & GPAW_BOUNDARY_Z0) != 0) {
            if ((blockix >= 0) && (blockix < xdiv * yy2)) {
                xind = blockix / yy2;
                i2bl = 0;
                zmax = MIN(BLOCK_X, zmax);
                i1bl = blockix - xind * yy2;
                if ((boundary & GPAW_BOUNDARY_Y0) != 0)
                    i1pitch = BLOCK_Y;
                if ((boundary & GPAW_BOUNDARY_Y1) != 0)
                    ymax = MAX(c_n.y - BLOCK_Y, 0);
            }
            blockix -= xdiv * yy2;
        }
        if ((boundary & GPAW_BOUNDARY_Z1) != 0) {
            if ((blockix >= 0) && (blockix < xdiv * yy2)) {
                xind = blockix / yy2;
                i2bl = 0;
                i2pitch = MAX(c_n.z - BLOCK_X, 0);
                i1bl = blockix - xind * yy2;
                if ((boundary & GPAW_BOUNDARY_Y0) != 0)
                    i1pitch = BLOCK_Y;
                if ((boundary & GPAW_BOUNDARY_Y1) != 0)
                    ymax = MAX(c_n.y - BLOCK_Y, 0);
            }
            blockix -= xdiv * yy2;
        }
        if ((boundary & GPAW_BOUNDARY_X0) != 0) {
            xstart += c_jb.x / 2;
            xlen -= c_jb.x / 2;
        }
        if ((boundary & GPAW_BOUNDARY_X1) != 0) {
            xlen -= c_jb.x / 2;
            xmax -= c_jb.x / 2;
        }
        xlen = (xlen + xdiv - 1) / xdiv;
        xstart += xind * xlen;
    }

    int i2tid = threadIdx.x;
    int i2 = i2pitch + i2bl * BLOCK_X + i2tid;

    int i1tid = threadIdx.y;
    int i1 = i1pitch + i1bl * BLOCK_Y + i1tid;

    __shared__ double s_coefs0[MYJ * 2 + 1];
    __shared__ double s_coefs1[MYJ * 2];
    __shared__ double s_coefs2[MYJ * 2];
    __shared__ double acache12[ACACHE_X * ACACHE_Y];

    double acache0[MYJ];
    double acache0t[MYJ + 1];
    double *acache12p;
    int sizez = c_jb.z + c_n.z;
    int sizeyz = (c_jb.y + c_n.y) * sizez;

    if ((xmax-xstart) < xlen)
        xlen = xmax - xstart;

    acache12p = acache12 + ACACHE_X * (i1tid + MYJ) + i2tid + MYJ;

    if (i2tid <= MYJ * 2)
        s_coefs0[i2tid] = c_coefs0[i2tid];
    if (i2tid < MYJ * 2) {
        s_coefs1[i2tid] = c_coefs1[i2tid];
        s_coefs2[i2tid] = c_coefs2[i2tid];
    }
    __syncthreads();

    a += xstart * sizeyz + i1 * sizez + i2;
    b += xstart * c_n.y * c_n.z + i1 * c_n.z + i2;
    src += xstart * c_n.y * c_n.z + i1 * c_n.z + i2;

    if (relax_method == 1) {
        /* Weighted Gauss-Seidel relaxation for the equation "operator" b = src
           a contains the temporary array holding also the boundary values. */

        // Coefficient needed multiple times later
        //      const double coef = 1.0/c_coefs[0];

        /* FIXME: NOT WORKIN ATM */
        return;
    } else {
        /* Weighted Jacobi relaxation for the equation "operator" b = src
           a contains the temporariry array holding also the boundary values. */
        for (int c=0; c < MYJ; c++) {
            if ((i1 < ymax) && (i2 < zmax))
                acache0[c] = a[(c - MYJ) * (sizeyz)];
        }
        for (int i0=0; i0 < xlen; i0++) {
            if (i1 < ymax + MYJ) {
                acache12p[-MYJ] = a[-MYJ];
                if  ((i2tid < MYJ * 2) && (i2 < zmax + MYJ - BLOCK_X + MYJ))
                    acache12p[BLOCK_X - MYJ] = a[BLOCK_X - MYJ];
            }
            if (i1tid < MYJ) {
                acache12p[-ACACHE_X * MYJ] = a[-sizez * MYJ];
                if  (i1 < ymax + MYJ - BLOCK_Y)
                    acache12p[ACACHE_X * BLOCK_Y] = a[sizez * BLOCK_Y];
            }
            __syncthreads();

            acache0t[0] = 0.0;
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[ACACHE_X * (c - MYJ)] * s_coefs1[c];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[c - MYJ] * s_coefs2[c];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[c+1] * s_coefs2[c + MYJ];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache12p[ACACHE_X * (c + 1)]
                             * s_coefs1[c + MYJ];
            for (int c=0; c < MYJ; c++)
                acache0t[0] += acache0[c] * s_coefs0[c];
            for (int c=0; c < MYJ; c++)
                acache0t[c + 1] += acache12p[0] * s_coefs0[c + 1 + MYJ];
            for (int c=0; c < ncoefs; c++)
                acache0t[0] += a[c_offsets[c]] * c_coefs[c];

            if (i0 >= MYJ) {
                if ((i1 < ymax) && (i2 < zmax)) {
                    b[0] = (1.0 - w) * b[0]
                         + w * (src[0] - acache0t[MYJ]) / coef_relax;
                }
                b += c_n.y * c_n.z;
                src += c_n.y * c_n.z;
            }

            for (int c=0; c < MYJ - 1; c++) {
                acache0[c] = acache0[c + 1];
            }
            acache0[MYJ - 1] = acache12p[0];
            for (int c=MYJ; c > 0; c--) {
                acache0t[c] = acache0t[c - 1];
            }
            a += sizeyz;
            __syncthreads();
        }
#pragma unroll
        for (int i0=0; i0 < MYJ; i0++) {
            if ((i1 < c_n.y) && (i2 < c_n.z))
                acache0[0] = a[0];
            if (i0 < 1)
                acache0t[1 - i0] += acache0[0] * s_coefs0[1 + MYJ];
#if MYJ >= 2
            if (i0 < 2)
                acache0t[2 - i0] += acache0[0] * s_coefs0[2 + MYJ];
#endif
#if MYJ >= 3
            if (i0 < 3)
                acache0t[3 - i0] += acache0[0] * s_coefs0[3 + MYJ];
#endif
#if MYJ >= 4
            if (i0 < 4)
                acache0t[4 - i0] += acache0[0] * s_coefs0[4 + MYJ];
#endif
#if MYJ >= 5
            if (i0 < 5)
                acache0t[5 - i0] += acache0[0] * s_coefs0[5 + MYJ];
#endif
            if (i0 + xlen >= MYJ) {
                if ((i1 < ymax) && (i2 < zmax)) {
                    b[0] = (1.0 - w) * b[0]
                         + w * (src[0] - acache0t[MYJ - i0]) / coef_relax;
                }
                b += c_n.y * c_n.z;
                src += c_n.y * c_n.z;
            }
            a += sizeyz;
        }
    }
}

#else

#define MYJ  (2/2)
#  define RELAX_kernel relax_kernel2
#  define RELAX_kernel_onlyb relax_kernel2_onlyb
#  include "relax.cpp"
#  undef RELAX_kernel
#  undef RELAX_kernel_onlyb
#  undef MYJ
#define MYJ  (4/2)
#  define RELAX_kernel relax_kernel4
#  define RELAX_kernel_onlyb relax_kernel4_onlyb
#  include "relax.cpp"
#  undef RELAX_kernel
#  undef RELAX_kernel_onlyb
#  undef MYJ
#define MYJ  (6/2)
#  define RELAX_kernel relax_kernel6
#  define RELAX_kernel_onlyb relax_kernel6_onlyb
#  include "relax.cpp"
#  undef RELAX_kernel
#  undef RELAX_kernel_onlyb
#  undef MYJ
#define MYJ  (8/2)
#  define RELAX_kernel relax_kernel8
#  define RELAX_kernel_onlyb relax_kernel8_onlyb
#  include "relax.cpp"
#  undef RELAX_kernel
#  undef RELAX_kernel_onlyb
#  undef MYJ
#define MYJ  (10/2)
#  define RELAX_kernel relax_kernel10
#  define RELAX_kernel_onlyb relax_kernel10_onlyb
#  include "relax.cpp"
#  undef RELAX_kernel
#  undef RELAX_kernel_onlyb
#  undef MYJ


extern "C"
bmgsstencil_gpu bmgs_stencil_to_gpu(const bmgsstencil* s);

extern "C"
int bmgs_fd_boundary_test(const bmgsstencil_gpu* s, int boundary,
                          int ndouble);

extern "C"
void bmgs_relax_gpu(const int relax_method,
                    const bmgsstencil_gpu* s_gpu,
                    double* adev, double* bdev, const double* src,
                    const double w, int boundary,
                    gpuStream_t stream)
{
    int3 jb;
    int3 bjb;
    int3 hc_bj;
    long3 hc_n;
    long3 hc_j;

    dim3 dimBlock(BLOCK_X, BLOCK_Y);

    if ((boundary & GPAW_BOUNDARY_SKIP) != 0) {
        if (!bmgs_fd_boundary_test(s_gpu, boundary, 1))
            return;
    } else if ((boundary & GPAW_BOUNDARY_ONLY) != 0) {
        if (!bmgs_fd_boundary_test(s_gpu, boundary, 1)) {
            boundary &= ~GPAW_BOUNDARY_ONLY;
            boundary |= GPAW_BOUNDARY_NORMAL;
        }
    }

    hc_n.x = s_gpu->n[0];
    hc_n.y = s_gpu->n[1];
    hc_n.z = s_gpu->n[2];
    hc_j.x = s_gpu->j[0];
    hc_j.y = s_gpu->j[1];
    hc_j.z = s_gpu->j[2];

    bjb.x = 0;
    bjb.y = 0;
    bjb.z = 0;
    hc_bj.x = 0;
    hc_bj.y = 0;
    hc_bj.z = 0;

    jb.z = hc_j.z;
    jb.y = hc_j.y / (hc_j.z + hc_n.z);
    jb.x = hc_j.x / ((hc_j.z + hc_n.z) * hc_n.y + hc_j.y);

    if ((boundary & GPAW_BOUNDARY_SKIP) != 0) {
        int3 jb1;
        int3 bjb1, bjb2;
        bjb1.x = 0;
        bjb1.y = 0;
        bjb1.z = 0;
        bjb2.x = 0;
        bjb2.y = 0;
        bjb2.z = 0;
        jb1.z = jb.z / 2;
        jb1.x = jb.x / 2;
        jb1.y = jb.y / 2;
        if ((boundary & GPAW_BOUNDARY_X0) != 0) {
            bjb1.x += jb.x / 2;
        }
        if ((boundary & GPAW_BOUNDARY_X1) != 0) {
            bjb2.x += jb.x / 2;
        }
        if ((boundary & GPAW_BOUNDARY_Y0) != 0) {
            bjb1.y += dimBlock.y;
        }
        if ((boundary & GPAW_BOUNDARY_Y1) != 0) {
            bjb2.y += dimBlock.y;
        }
        if ((boundary & GPAW_BOUNDARY_Z0) != 0) {
            bjb1.z += dimBlock.x;
        }
        if ((boundary & GPAW_BOUNDARY_Z1) != 0) {
            bjb2.z += dimBlock.x;
        }
        bjb.x = bjb1.x + bjb2.x;
        bjb.y = bjb1.y + bjb2.y;
        bjb.z = bjb1.z + bjb2.z;

        hc_n.x -= bjb.x;
        hc_n.y -= bjb.y;
        hc_n.z -= bjb.z;

        jb.x += bjb.x;
        jb.y += bjb.y;
        jb.z += bjb.z;
        jb1.x += bjb1.x;
        jb1.y += bjb1.y;
        jb1.z += bjb1.z;

        hc_bj.z = bjb.z;
        hc_bj.y = bjb.y * (hc_bj.z + hc_n.z);
        hc_bj.x = bjb.x * ((hc_bj.z + hc_n.z) * hc_n.y + hc_bj.y);

        hc_j.z = jb.z;
        hc_j.y = jb.y * (hc_j.z + hc_n.z);
        hc_j.x = jb.x * ((hc_j.z + hc_n.z) * hc_n.y + hc_j.y);

        bdev += bjb1.z + bjb1.y * (hc_bj.z + hc_n.z)
              + bjb1.x * ((hc_bj.z + hc_n.z) * hc_n.y + hc_bj.y);
        src += bjb1.z + bjb1.y * (hc_bj.z + hc_n.z)
             + bjb1.x * ((hc_bj.z + hc_n.z) * hc_n.y + hc_bj.y);

        adev = (Tgpu*) ((double*) adev + jb1.z
             + jb1.y * (hc_j.z + hc_n.z)
             + jb1.x * ((hc_j.z + hc_n.z) * hc_n.y + hc_j.y));
    } else {
        adev = (Tgpu*) ((double*) adev + (hc_j.x + hc_j.y + hc_j.z) / 2);
    }
    if ((hc_n.x <= 0) || (hc_n.y <= 0) || (hc_n.z <= 0))
        return;

    dim3 dimGrid(1,1,1);
    int xdiv = MIN(hc_n.x, 4);

    if (((boundary & GPAW_BOUNDARY_NORMAL) != 0)
            || ((boundary & GPAW_BOUNDARY_SKIP) != 0)) {
        dimGrid.x = xdiv * MAX((hc_n.z + dimBlock.x - 1) / dimBlock.x, 1);
        dimGrid.y = MAX((hc_n.y + dimBlock.y - 1) / dimBlock.y, 1);
    } else if ((boundary & GPAW_BOUNDARY_ONLY) != 0) {
        int xx = MAX((hc_n.z + dimBlock.x - 1) / dimBlock.x, 1);
        int yy = MAX((hc_n.y + dimBlock.y - 1) / dimBlock.y, 1);
        int ysiz = hc_n.y;
        if ((boundary & GPAW_BOUNDARY_Y0) != 0)
            ysiz -= dimBlock.y;
        if ((boundary & GPAW_BOUNDARY_Y1) != 0)
            ysiz -= dimBlock.y;
        int yy2 = MAX((ysiz + dimBlock.y - 1) / dimBlock.y, 0);
        dimGrid.x = 0;
        if ((boundary & GPAW_BOUNDARY_X0) != 0)
            dimGrid.x += xx * yy;
        if ((boundary & GPAW_BOUNDARY_X1) != 0)
            dimGrid.x += xx * yy;
        if ((boundary & GPAW_BOUNDARY_Y0) != 0)
            dimGrid.x += xdiv * xx;
        if ((boundary & GPAW_BOUNDARY_Y1) != 0)
            dimGrid.x += xdiv * xx;
        if ((boundary & GPAW_BOUNDARY_Z0) != 0)
            dimGrid.x += xdiv * yy2;
        if ((boundary & GPAW_BOUNDARY_Z1) != 0)
            dimGrid.x += xdiv * yy2;
        dimGrid.y = 1;
    }

    int3 sizea;
    sizea.z = hc_j.z + hc_n.z;
    sizea.y = sizea.z * hc_n.y + hc_j.y;
    sizea.x = sizea.y * hc_n.x + hc_j.x;

    int3 sizeb;
    sizeb.z = hc_bj.z + hc_n.z;
    sizeb.y = sizeb.z * hc_n.y + hc_bj.y;
    sizeb.x = sizeb.y * hc_n.x + hc_bj.x;

    if (((boundary & GPAW_BOUNDARY_NORMAL) != 0)
            || ((boundary & GPAW_BOUNDARY_SKIP) != 0)) {
        void (*relax_kernel)(
                const int relax_method, const double coef_relax,
                const int ncoefs, const double* c_coefs,
                const long* c_offsets,
                const double* c_coefs0,
                const double* c_coefs1,
                const double* c_coefs2,
                const double* a, double* b,
                const double* src, const long3 c_n,
                const int3 a_size, const int3 b_size,
                const double w, const int xdiv);
        switch (s_gpu->ncoefs0) {
            case 3:
                relax_kernel = relax_kernel2;
                break;
            case 5:
                relax_kernel = relax_kernel4;
                break;
            case 7:
                relax_kernel = relax_kernel6;
                break;
            case 9:
                relax_kernel = relax_kernel8;
                break;
            case 11:
                relax_kernel = relax_kernel10;
                break;
            default:
                assert(0);
        }
        gpuLaunchKernel(
                (*relax_kernel), dimGrid, dimBlock, 0, stream,
                relax_method, s_gpu->coef_relax, s_gpu->ncoefs,
                s_gpu->coefs_gpu, s_gpu->offsets_gpu,
                s_gpu->coefs0_gpu, s_gpu->coefs1_gpu, s_gpu->coefs2_gpu,
                adev, bdev, src, hc_n, sizea, sizeb, w, xdiv);
    } else if ((boundary & GPAW_BOUNDARY_ONLY) != 0) {
        void (*relax_kernel)(
                const int relax_method, const double coef_relax,
                const int ncoefs, const double* c_coefs,
                const long* c_offsets,
                const double* c_coefs0,
                const double* c_coefs1,
                const double* c_coefs2,
                const double* a, double* b,
                const double* src, const long3 c_n,
                const int3 c_jb, const int boundary,
                const double w, const int xdiv);
        switch (s_gpu->ncoefs0) {
            case 3:
                relax_kernel = relax_kernel2_onlyb;
                break;
            case 5:
                relax_kernel = relax_kernel4_onlyb;
                break;
            case 7:
                relax_kernel = relax_kernel6_onlyb;
                break;
            case 9:
                relax_kernel = relax_kernel8_onlyb;
                break;
            case 11:
                relax_kernel = relax_kernel10_onlyb;
                break;
            default:
                assert(0);
        }
        gpuLaunchKernel(
                (*relax_kernel), dimGrid, dimBlock, 0, stream,
                relax_method, s_gpu->coef_relax, s_gpu->ncoefs,
                s_gpu->coefs_gpu, s_gpu->offsets_gpu,
                s_gpu->coefs0_gpu, s_gpu->coefs1_gpu, s_gpu->coefs2_gpu,
                adev, bdev, src, hc_n, jb, boundary, w, xdiv);
    }
    gpuCheckLastError();
}

#endif