1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
#include <Python.h>
#define PY_ARRAY_UNIQUE_SYMBOL GPAW_ARRAY_API
#define NO_IMPORT_ARRAY
#include <numpy/arrayobject.h>
#include <stdlib.h>
#include <pthread.h>
#include "../extensions.h"
#define __TRANSFORMERS_C
#include "../transformers.h"
#undef __TRANSFORMERS_C
#include "bmgs.h"
#include "gpu.h"
static double *transformer_buf_gpu = NULL;
static double *transformer_buf16_gpu = NULL;
static int transformer_buf_size = 0;
static int transformer_init_count = 0;
/*
* Increment reference count to register a new tranformer object.
*/
void transformer_init_gpu(TransformerObject *self)
{
transformer_init_count++;
}
/*
* Ensure buffer is allocated and is big enough. Reallocate only if
* size has increased.
*/
void transformer_init_buffers(TransformerObject *self, int blocks)
{
const boundary_conditions* bc = self->bc;
const int* size2 = bc->size2;
int ng2 = (bc->ndouble * size2[0] * size2[1] * size2[2]) * blocks;
if (ng2 > transformer_buf_size) {
gpuFree(transformer_buf_gpu);
gpuCheckLastError();
gpuMalloc(&transformer_buf_gpu, sizeof(double) * ng2);
gpuFree(transformer_buf16_gpu);
gpuCheckLastError();
gpuMalloc(&transformer_buf16_gpu, sizeof(double) * ng2 * 16);
transformer_buf_size = ng2;
}
}
/*
* Reset reference count and unset buffer.
*/
void transformer_init_buffers_gpu()
{
transformer_buf_gpu = NULL;
transformer_buf16_gpu = NULL;
transformer_buf_size = 0;
transformer_init_count = 0;
}
/*
* Deallocate buffer or decrease reference count.
*
* arguments:
* (int) force -- if true, force deallocation
*/
void transformer_dealloc_gpu(int force)
{
if (force)
transformer_init_count = 1;
if (transformer_init_count == 1) {
gpuFree(transformer_buf_gpu);
gpuCheckLastError();
transformer_init_buffers_gpu();
return;
}
if (transformer_init_count > 0)
transformer_init_count--;
}
/*
* Run the interpolate and restrict algorithm (see transapply_worker()
* in ../transformers.c) on the GPU.
*/
static void _transformer_apply_gpu(TransformerObject* self,
const double *in, double *out,
int nin, int blocks, bool real,
const double_complex *ph, bool stencil)
{
boundary_conditions* bc = self->bc;
const int* size1 = bc->size1;
int ng = bc->ndouble * size1[0] * size1[1] * size1[2];
int out_ng = bc->ndouble * self->size_out[0] * self->size_out[1]
* self->size_out[2];
int mpi_size = 1;
if ((bc->maxsend || bc->maxrecv) && bc->comm != MPI_COMM_NULL)
MPI_Comm_size(bc->comm, &mpi_size);
MPI_Request recvreq[3][2];
MPI_Request sendreq[3][2];
transformer_init_buffers(self, blocks);
double* buf = transformer_buf_gpu;
double* buf16 = transformer_buf16_gpu;
/* use stencil version, if no optimised kernel available */
if (self->k != 2) {
stencil = 1;
}
for (int n = 0; n < nin; n += blocks) {
const double* in2 = in + n * ng;
double* out2 = out + n * out_ng;
int myblocks = MIN(blocks, nin - n);
bc_unpack_paste_gpu(bc, in2, buf, recvreq, 0, myblocks);
for (int i=0; i < 3; i++) {
bc_unpack_gpu(bc, buf, i, recvreq, sendreq[i],
ph + 2 * i, 0, myblocks);
}
if (self->interpolate) {
if (stencil) {
if (real) {
bmgs_interpolate_stencil_gpu(self->k, self->skip, buf,
bc->size2, out2,
self->size_out, buf16,
myblocks);
} else {
bmgs_interpolate_stencil_gpuz(self->k, self->skip,
(gpuDoubleComplex*) (buf),
bc->size2,
(gpuDoubleComplex*) (out2),
self->size_out,
(gpuDoubleComplex*) (buf16),
myblocks);
}
} else {
if (real) {
bmgs_interpolate_gpu(self->k, self->skip, buf,
bc->size2, out2, self->size_out,
myblocks);
} else {
bmgs_interpolate_gpuz(self->k, self->skip,
(gpuDoubleComplex*) (buf),
bc->size2,
(gpuDoubleComplex*) (out2),
self->size_out, myblocks);
}
}
} else {
if (stencil) {
if (real) {
bmgs_restrict_stencil_gpu(self->k, buf, bc->size2,
out2, self->size_out, buf16,
myblocks);
} else {
bmgs_restrict_stencil_gpuz(self->k,
(gpuDoubleComplex*) (buf),
bc->size2,
(gpuDoubleComplex*) (out2),
self->size_out,
(gpuDoubleComplex*) (buf16),
myblocks);
}
} else {
if (real) {
bmgs_restrict_gpu(self->k, buf, bc->size2,
out2, self->size_out, myblocks);
} else {
bmgs_restrict_gpuz(self->k,
(gpuDoubleComplex*) (buf),
bc->size2,
(gpuDoubleComplex*) (out2),
self->size_out, myblocks);
}
}
}
}
}
/*
* Python interface for the GPU version of the interpolate and restrict
* algorithm (similar to Transformer_apply() for CPUs).
*
* arguments:
* input_gpu -- pointer to device memory (GPUArray.gpudata)
* output_gpu -- pointer to device memory (GPUArray.gpudata)
* shape -- shape of the array (tuple)
* type -- datatype of array elements
* phases -- phase (complex) (ignored if type is NPY_DOUBLE)
* stencil -- use stencil version of interpolate functions
*/
PyObject* Transformer_apply_gpu(TransformerObject *self, PyObject *args)
{
PyArrayObject* phases = 0;
void *input_gpu;
void *output_gpu;
PyObject *shape;
PyArray_Descr *type;
int stencil = 0;
if (!PyArg_ParseTuple(args, "nnOO|Oi", &input_gpu, &output_gpu, &shape,
&type, &phases, &stencil))
return NULL;
int nin = 1;
if (PyTuple_Size(shape) == 4)
nin = (int) PyLong_AsLong(PyTuple_GetItem(shape, 0));
const double* in = (double*) input_gpu;
double* out = (double*) output_gpu;
bool real = (type->type_num == NPY_DOUBLE);
const double_complex* ph = (real ? 0 : COMPLEXP(phases));
boundary_conditions* bc = self->bc;
int mpi_size = 1;
if ((bc->maxsend || bc->maxrecv) && bc->comm != MPI_COMM_NULL)
MPI_Comm_size(bc->comm, &mpi_size);
int blocks = MAX(1, MIN(nin, MIN((GPU_BLOCKS_MIN) * mpi_size,
(GPU_BLOCKS_MAX) / bc->ndouble)));
_transformer_apply_gpu(self, in, out, nin, blocks, real, ph, stencil);
if (PyErr_Occurred())
return NULL;
else
Py_RETURN_NONE;
}
|