1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
# creates: H.rst, H.png
# ... and all the rest.
import gzip
import json
import sys
import matplotlib.pyplot as plt
import numpy as np
from ase.data import atomic_names, atomic_numbers
from ase.units import Hartree
from ase.utils import plural
RST = """\
.. Computer generated reST (make_setup_pages.py)
.. index:: {name}
.. _{name}:
================
{name}
================
PAW-potentials:
.. csv-table::
:header: name, valence electrons, frozen core electrons
{table}"""
RST1 = """
{electrons}
====================
Radial cutoffs and eigenvalues:
.. csv-table::
:header: id, occ, eig [eV], cutoff [Bohr]
{table1}
The figure shows convergence of the absolute FCC-energy (blue lines)
and BCC-FCC energy difference (orange lines) relative
to converged numbers (plane-wave calculation at 1200 eV).
.. image:: {dataset}.png
.. csv-table::
:header: mode, E(FCC) [eV/atom], E(BCC) [eV/atom], E(BCC)-E(FCC) [eV/atom]
{table2}
Egg-box errors in finite-difference mode:
.. csv-table::
:header: grid-spacing [Å], energy variation [meV]
{table3}"""
def rst(names, data):
symbol = names[0]
Z = atomic_numbers[symbol]
name = atomic_names[Z]
table = ''
rst = RST
for name in names:
dct = data[name]
_, _, kind = name.partition('.')
kind = kind or 'default'
nv, txt = rst1(dct, name, symbol)
if kind != 'default':
kind = f"``'{kind}'``"
table += f' {kind},{nv},{Z - nv}\n'
rst += txt
with open(symbol + '.rst', 'w') as fd:
fd.write(rst.format(table=table, name=name))
def rst1(dct, name, symbol):
table1 = ''
nv = 0
for n, l, f, e, rcut in dct['nlfer']:
n, l, f = (int(x) for x in [n, l, f])
if n == -1:
n = ''
table1 += f" {n}{'spdf'[l]},{f},{e * Hartree:.3f},"
if rcut:
table1 += f'{rcut:.2f}'
nv += f
table1 += '\n'
_, _, eegg = dct['eggbox']
if eegg:
table3 = ''
for h, energies in eegg:
E = [e for h, e in energies]
e = np.ptp(E)
table3 += f' {h:.2f},{1000 * e:.3f}\n'
else:
table3 = ' -,-\n'
fig = plt.figure(figsize=(8, 5))
_, _, _, _, xfcc, yfcc = dct['fcc-pw']
_, _, _, _, xbcc, ybcc = dct['bcc-pw']
yfcc = np.array(yfcc)
efcc0 = yfcc[0]
ebcc0 = ybcc[0]
table2 = (' PW(ecut=1200),' +
f'{efcc0:.3f},{ebcc0:.3f},{ebcc0 - efcc0:.3f}\n')
n = min(len(yfcc), len(ybcc))
dy = ybcc[:n] - yfcc[:n]
dy -= dy[0]
ax1 = plt.subplot(121)
ax1.semilogy(xfcc[1:len(yfcc)], abs(yfcc[1:] - yfcc[0]),
'C0-', label='PW, E(FCC)')
ax1.semilogy(xfcc[1:n], abs(dy[1:]), 'C1--', label='PW, E(BCC)-E(FCC)')
plt.xlabel('Planewave cutoff [eV]')
plt.ylabel('Error [eV/atom]')
plt.legend(loc='best')
ax2 = plt.subplot(122, sharey=ax1)
for mode, style in [('fd', 's'), ('lcao', 'o')]:
_, _, _, _, hfcc, efcc = dct[f'fcc-{mode}']
_, _, _, _, hbcc, ebcc = dct[f'bcc-{mode}']
efcc = np.array(efcc) - efcc0
ebcc = np.array(ebcc) - ebcc0
ax2.semilogy(hfcc[:len(efcc)], abs(efcc), f'C0{style}-',
label=f'{mode.upper()}, E(FCC)')
H = []
de = []
for hf, ef in zip(hfcc, efcc):
_, hb, eb = min((abs(hb - hf), hb, eb)
for hb, eb in zip(hbcc, ebcc))
H.append((hf + hb) / 2)
de.append(abs(eb - ef))
ax2.semilogy(H, de, f'C1{style}--',
label=f'{mode.upper()}, E(BCC)-E(FCC)')
if len(efcc) > 0:
table2 += (
f' "{mode.upper()}(h={hfcc[0]:.2f},{hbcc[0]:.2f})",' +
f'{efcc[0] + efcc0:.3f},' +
f'{ebcc[0] + ebcc0:.3f},' +
f'{ebcc[0] + ebcc0 - efcc[0] - efcc0:.3f}\n')
plt.xlabel('grid-spacing [Å]')
plt.legend(loc='best')
plt.setp(ax2.get_yticklabels(), visible=False)
plt.tight_layout()
plt.subplots_adjust(wspace=0)
plt.savefig(name + '.png')
plt.close(fig)
nv = dct['nvalence']
return nv, RST1.format(electrons=plural(nv, 'valence electron'),
table1=table1,
table2=table2,
table3=table3,
symbol=symbol,
dataset=name)
def main(symbols=None):
with gzip.open('potentials.json.gz', 'rt') as fd:
data = json.load(fd)
for symbol in symbols or data:
if '.' not in symbol:
print(symbol, end='')
sys.stdout.flush()
rst([symbol] + [name for name in data
if name.startswith(symbol + '.')],
data)
print()
# if __name__ == '__main__':
if 1:
# main(['In'])
main()
|