1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
/*
*
* gPlanarity:
* The geeky little puzzle game with a big noodly crunch!
*
* gPlanarity copyright (C) 2005 Monty <monty@xiph.org>
* Original Flash game by John Tantalo <john.tantalo@case.edu>
* Original game concept by Mary Radcliffe
*
* gPlanarity is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* gPlanarity is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Postfish; see the file COPYING. If not, write to the
* Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "graph.h"
#include "random.h"
#include "gameboard.h"
#include "graph_generate.h"
#include "graph_arrange.h"
typedef struct {
vertex **v;
edge_list *embed_list;
int width;
int height;
} mesh;
typedef struct {
int vnum[8];
vertex *center;
mesh *m;
} neighbors_grid;
typedef struct {
int vnum[8];
int num;
} neighbors_list;
/* The 'embed_list' is a set of edges that don't obey or neighboring
intersection calculation mode and are thus tracked
seperately/explicitly. They're added to the main graph after the
rest of the graph is generated. */
/* add edge to the embed_list */
static void embedlist_add_edge(mesh *m, vertex *A, vertex *B){
edge *e = new_edge(A,B);
m->embed_list = add_edge_to_list(m->embed_list,e);
}
/* move embed_list edges into the real graph */
static void embedlist_add_to_mesh(graph *g, mesh *m){
edge_list *el = m->embed_list;
/* move the edges out of the embed_list and add them to the main graph */
while(el){
edge *e = el->edge;
el->edge = 0;
insert_edge(g,e);
el=el->next;
}
release_edge_list(m->embed_list);
m->embed_list=0; /* be pedantic */
}
static int embedlist_intersects(mesh *m, vertex *A, vertex *B){
edge_list *el = m->embed_list;
double dummy_x,dummy_y;
while(el){
edge *e = el->edge;
if(intersectsV(A,B,e->A,e->B,&dummy_x,&dummy_y))
return 1;
el=el->next;
}
return 0;
}
static void embedlist_filter_intersections(neighbors_grid *ng){
int i;
vertex *A = ng->center;
for(i=0;i<8;i++){
if(ng->vnum[i] != -1){
vertex *B = ng->m->v[ng->vnum[i]];
if(embedlist_intersects(ng->m,A,B))
ng->vnum[i]=-1;
}
}
}
static int embedlist_contains_vertex(mesh *m,vertex *v){
edge_list *el = m->embed_list;
while(el){
edge *e = el->edge;
if(e->A == v) return 1;
if(e->B == v) return 1;
el=el->next;
}
return 0;
}
static int embedlist_vertex_poisoned(mesh *m, vertex *v){
return v->selected;
}
static void poison_vertex(mesh *m, vertex *v){
v->selected=1;
}
/* neighboring intersection model */
static void populate_neighbors(int vnum, mesh *m,
neighbors_grid *ng){
int width = m->width;
int y = vnum/width;
int x = vnum - (y*width);
int i;
for(i=0;i<8;i++)ng->vnum[i]=-1;
ng->center = m->v[vnum];
ng->m = m;
if(y-1 >= 0){
if(x-1 >= 0) ng->vnum[0]= (y-1)*width+(x-1);
ng->vnum[1]= (y-1)*width+x;
if(x+1 < m->width) ng->vnum[2]= (y-1)*width+(x+1);
}
if(x-1 >= 0) ng->vnum[3]= y*width+(x-1);
if(x+1 < m->width) ng->vnum[4]= y*width+(x+1);
if(y+1 < m->height){
if(x-1 >= 0) ng->vnum[5]= (y+1)*width+(x-1);
ng->vnum[6]= (y+1)*width+x;
if(x+1 < m->width) ng->vnum[7]= (y+1)*width+(x+1);
}
}
// eliminate from neighbor structs the verticies that already have at
// least one edge
static void filter_spanned_neighbors(neighbors_grid *ng,
neighbors_list *nl){
int i;
int count=0;
for(i=0;i<8;i++)
if(ng->vnum[i]==-1 || ng->m->v[ng->vnum[i]]->edges){
ng->vnum[i]=-1;
}else{
nl->vnum[count++]=ng->vnum[i];
}
nl->num=count;
}
// eliminate from neighbor struct any verticies to which we can't make
// an edge without crossing another edge. Only 0,2,5,7 possible.
static void filter_intersections(neighbors_grid *ng){
int i;
for(i=0;i<8;i++){
switch(i){
case 0:
if(ng->vnum[1] != -1 &&
ng->vnum[3] != -1 &&
exists_edge(ng->m->v[ng->vnum[1]],
ng->m->v[ng->vnum[3]]))
ng->vnum[i]=-1;
break;
case 2:
if(ng->vnum[1] != -1 &&
ng->vnum[4] != -1 &&
exists_edge(ng->m->v[ng->vnum[1]],
ng->m->v[ng->vnum[4]]))
ng->vnum[i]=-1;
break;
case 5:
if(ng->vnum[3] != -1 &&
ng->vnum[6] != -1 &&
exists_edge(ng->m->v[ng->vnum[3]],
ng->m->v[ng->vnum[6]]))
ng->vnum[i]=-1;
break;
case 7:
if(ng->vnum[4] != -1 &&
ng->vnum[6] != -1 &&
exists_edge(ng->m->v[ng->vnum[4]],
ng->m->v[ng->vnum[6]]))
ng->vnum[i]=-1;
break;
}
}
embedlist_filter_intersections(ng);
}
/* eliminate verticies we've already connected to */
static void filter_edges(neighbors_grid *ng,
neighbors_list *nl){
vertex *v=ng->center;
int count=0,i;
for(i=0;i<8;i++){
if(ng->vnum[i]!=-1){
if(!exists_edge(v,ng->m->v[ng->vnum[i]]))
nl->vnum[count++]=ng->vnum[i];
else
ng->vnum[i]=-1;
}
}
nl->num=count;
}
static void random_populate(graph *g, int current, mesh *m, int min_connect, int prob_128){
int num_edges=0,i;
neighbors_grid ng;
neighbors_list nl;
populate_neighbors(current, m, &ng);
filter_intersections(&ng);
filter_edges(&ng,&nl);
{
edge_list *el=m->v[current]->edges;
while(el){
num_edges++;
el=el->next;
}
}
while(num_edges<min_connect && nl.num){
int choice = random_number() % nl.num;
add_edge(g,m->v[current], m->v[nl.vnum[choice]]);
num_edges++;
filter_intersections(&ng);
filter_edges(&ng,&nl);
}
for(i=0;i<nl.num;i++)
if(random_yes(prob_128)){
num_edges++;
add_edge(g,m->v[current], m->v[nl.vnum[i]]);
}
}
static void span_depth_first(graph *g,int current, mesh *m){
neighbors_grid ng;
neighbors_list nl;
while(1){
populate_neighbors(current, m, &ng);
// don't reverse the order of the next two
filter_intersections(&ng);
filter_spanned_neighbors(&ng,&nl);
if(nl.num == 0) break;
{
int choice = random_number() % nl.num;
add_edge(g,m->v[current], m->v[nl.vnum[choice]]);
span_depth_first(g,nl.vnum[choice], m);
}
}
}
/* nastiness adds long edges along the outer perimeter to make it
harder to rely on verticies always being near each other; mesh 2
takes this further, but we can add some of the same flavor to
mesh1. */
static void nasty_horizontal(graph *g, mesh *m, int A, int B, int limit){
if(limit == 0) return;
if(A+2 > B)return; /* adjacent is too close */
add_edge(g,m->v[A],m->v[B]);
A++;
B--;
nasty_horizontal(g,m,A,B,limit-1);
}
static void nasty_vertical(graph *g, mesh *m, int A, int B, int limit){
if(limit == 0) return;
if(A+(m->width*2) > B)return; /* adjacent is too close */
add_edge(g,m->v[A],m->v[B]);
A+=m->width;
B-=m->width;
nasty_vertical(g,m,A,B,limit-1);
}
/* Don't use this along with k5 embedding; the assumptions the
nastiness algorithm makes about solvable conditions won't always
coexist with the assumptions the k5 embedding makes about solvable
conditions. */
static void mesh_nastiness(graph *g, mesh *m, int limit){
nasty_horizontal(g,m,0,m->width-1, limit);
nasty_horizontal(g,m,(m->height-1)*m->width,m->width*m->height-1, limit);
nasty_vertical(g,m,0,(m->height-1)*m->width,limit);
nasty_vertical(g,m,m->width-1,m->width*m->height-1, limit);
}
/* Embed one k5 in the solved graph */
/* Don't use this along with 'nastiness'; the assumptions the
nastiness algorithm makes about solvable conditions won't always
coexist with the assumptions that non-planar embedding makes about
solvable conditions. */
static void mesh_embed_k5(graph *g, mesh *m,int x, int y){
/* Add the k5s up front in their own special edge list; This list
will also be checked explicitly by the various neighboring
algorithms as the k5's edges don't all conceptually work within
the implicit neighboring algorithm we're using. Also, by using a
special edge list and not adding the k5 edges to the vertex edge
lists up front, we can still use the unmodified initial spanning
walk algorithm. */
int w = m->width;
vertex *A = m->v[y*w+x+1];
vertex *B = m->v[(y+1)*w+x+1];
vertex *C = m->v[(y+1)*w+x+2];
vertex *D = m->v[(y+1)*w+x+3];
vertex *E = m->v[(y+2)*w+x];
// poisoned verticies are already inside another kernel (the regular
// mesh is deflectable and thus not really regular)
if(embedlist_vertex_poisoned(m,A))return;
if(embedlist_vertex_poisoned(m,B))return;
if(embedlist_vertex_poisoned(m,C))return;
if(embedlist_vertex_poisoned(m,D))return;
if(embedlist_vertex_poisoned(m,E))return;
// the way k5 works we don't need to poison the internal verticies
embedlist_add_edge(m, A,B);
embedlist_add_edge(m, A,C);
embedlist_add_edge(m, A,D);
embedlist_add_edge(m, A,E);
embedlist_add_edge(m, B,C);
embedlist_add_edge(m, B,D);
embedlist_add_edge(m, B,E);
embedlist_add_edge(m, C,D);
embedlist_add_edge(m, C,E);
embedlist_add_edge(m, D,E);
g->objective++;
}
/* Embed one k3,3 in the solved graph */
/* Don't use this along with 'nastiness'; the assumptions the
nastiness algorithm makes about solvable conditions won't always
coexist with the assumptions that k5 embedding makes about solvable
conditions. */
static void mesh_embed_k33(graph *g, mesh *m, int x, int y){
/* same disclaimers as k5 */
/* the k3,3 embedding works with the standard walk algorithm only
because an edge with an endpoint exactly on another edge is
considered an intersection. */
/* the way it is added, the walk/population can add additional edges
inside the embedded kernel; this is fine, the population will be
certain not to introduce intersections. */
int w = m->width;
vertex *A = m->v[y*w+x];
vertex *B = m->v[y*w+x+1];
vertex *C = m->v[y*w+x+2];
vertex *D = m->v[(y+1)*w+x];
vertex *E = m->v[(y+1)*w+x+1];
vertex *F = m->v[(y+1)*w+x+2];
// poisoned verticies are already inside another kernel (the regular
// mesh is deflectable and thus not really regular)
if(embedlist_vertex_poisoned(m,A))return;
if(embedlist_vertex_poisoned(m,B))return;
if(embedlist_vertex_poisoned(m,C))return;
if(embedlist_vertex_poisoned(m,D))return;
if(embedlist_vertex_poisoned(m,E))return;
if(embedlist_vertex_poisoned(m,F))return;
// check that verticies we want to poison ourselves are not already in use
if(embedlist_contains_vertex(m,B))return;
if(embedlist_contains_vertex(m,E))return;
/* B and E are internal according to x/y, but according to the
position in the mesh, they're on the outside. Poison them so
that they're explicitly marked inside. */
poison_vertex(m,B);
poison_vertex(m,E);
/* need to mode two of the intersections to avoid unwanted
intersections (not spurious; they are in fact intersections until
moved) */
B->y+=2;
E->y-=2;
embedlist_add_edge(m, A,C);
embedlist_add_edge(m, A,D);
embedlist_add_edge(m, A,E);
embedlist_add_edge(m, B,C);
embedlist_add_edge(m, B,D);
embedlist_add_edge(m, B,E);
embedlist_add_edge(m, C,F);
embedlist_add_edge(m, D,F);
embedlist_add_edge(m, E,F);
g->objective++;
}
/* Embed one non-miminal k3,3 in the solved graph */
/* Don't use this along with 'nastiness'; the assumptions the
nastiness algorithm makes about solvable conditions won't always
coexist with the assumptions that k5 embedding makes about solvable
conditions. */
static void mesh_embed_bigk33(graph *g, mesh *m, int x, int y){
/* as above */
int w = m->width;
vertex *A = m->v[(y+2)*w+x];
vertex *B = m->v[(y+1)*w+x+2];
vertex *C = m->v[y*w+x+4];
vertex *D = m->v[(y+4)*w+x+1];
vertex *E = m->v[(y+3)*w+x+3];
vertex *F = m->v[(y+2)*w+x+5];
// poisoned verticies are already inside another kernel (the regular
// mesh is deflectable and thus not really regular)
if(embedlist_vertex_poisoned(m,A))return;
if(embedlist_vertex_poisoned(m,B))return;
if(embedlist_vertex_poisoned(m,C))return;
if(embedlist_vertex_poisoned(m,D))return;
if(embedlist_vertex_poisoned(m,E))return;
if(embedlist_vertex_poisoned(m,F))return;
// check that verticies we want to poison ourselves are not already in use
if(embedlist_contains_vertex(m,B))return;
if(embedlist_contains_vertex(m,E))return;
/* B and E are internal according to x/y, but according to the
position in the mesh, they're on the outside. Poison them so
that they're explicitly marked inside. */
poison_vertex(m,B);
poison_vertex(m,E);
/* need to move two of the intersections to avoid unwanted
intersections (not spurious; they are in fact intersections until
moved) */
B->y+=2;
E->y-=2;
embedlist_add_edge(m, A,C);
embedlist_add_edge(m, A,D);
embedlist_add_edge(m, A,E);
embedlist_add_edge(m, B,C);
embedlist_add_edge(m, B,D);
embedlist_add_edge(m, B,E);
embedlist_add_edge(m, C,F);
embedlist_add_edge(m, D,F);
embedlist_add_edge(m, E,F);
g->objective++;
}
static void mesh_embed_recurse(graph *g,mesh *m,int x, int y, int w, int h, int k5, int k33, int bigk33){
int xd,yd,wd,hd;
// not minimal spacing; the k33 needs vertical offset, but the others are larger just to space them out.
if( bigk33 && w>=6 && h>=5 ){
wd = 5;
hd = 4;
xd = random_number() % (w-wd);
yd = random_number() % (h-hd);
mesh_embed_bigk33(g,m,x+xd,y+yd);
}else if(k5 && w>=4 && h>=3){
wd = 3;
hd = 2;
xd = random_number() % (w-wd);
yd = random_number() % (h-hd);
mesh_embed_k5(g,m,x+xd,y+yd);
}else if(k33 && w>=3 && h>=2 ){
wd = 2;
hd = 1;
xd = random_number() % (w-wd);
yd = random_number() % (h-hd);
mesh_embed_k33(g,m,x+xd,y+yd);
}else
return;
mesh_embed_recurse(g,m, x, y, w, yd+1, k5,k33,bigk33);
mesh_embed_recurse(g,m, x, y+yd+hd, w, h-yd-hd, k5,k33,bigk33);
mesh_embed_recurse(g,m, x, y+yd, xd+1, hd+1, k5,k33,bigk33);
mesh_embed_recurse(g,m, x+xd+wd,y+yd, w-xd-wd, hd+1, k5,k33,bigk33);
}
/* Embed k5s and k3,3s in the solved graph in such a way that we know each added
non-planar kernel adds exactly one and only one certain intersection. */
/* Don't use this along with 'nastiness'; the assumptions the
nastiness algorithm makes about solvable conditions won't always
coexist with the assumptions that non-planar embedding makes about
solvable conditions. */
static void mesh_embed_nonplanar(graph *g, mesh *m,int k5, int k33, int bigk33){
// selection is used as a poison flag during embedding
deselect_verticies(g);
mesh_embed_recurse(g, m, 0,0,m->width,m->height, k5,k33,bigk33);
deselect_verticies(g);
}
/* Rogues are added lines inserted between verticies on neighboring
rows/columns; the idea is to choose the longest ones that cross the
smallest number of lines. */
/* Right now, the rogue insertion doesn't take embedded kernel
poisoning or niceness constraints into account, so don't mix
them */
static int count_intersections(graph *g, vertex *A, vertex *B){
edge *e=g->edges;
double dummy_x,dummy_y;
int count=0;
while(e){
if(intersectsV(A,B,e->A,e->B,&dummy_x,&dummy_y))
count++;
e=e->next;
}
return count;
}
static void scan_rogue(graph *g, mesh *m, int aoff,int boff, int step, int end,
float *metric, edge *best, int *cross){
int a,b;
for(a=0;a+1<end;a++){
for(b=a+1;b<end;b++){
vertex *va = m->v[a*step+aoff];
vertex *vb = m->v[b*step+boff];
if(!va->selected && !vb->selected){
if(!exists_edge(va,vb)){
int count = count_intersections(g,va,vb);
if(count){
float test = (b-a)/count;
if(test>=*metric){
*metric=test;
best->A=va;
best->B=vb;
*cross=count;
}
}
}
}
}
}
}
/* scan the entire mesh looking for the candidate edge with the highest rogue objective value */
static void mesh_add_rogues(graph *g, mesh *m){
int w = m->width;
int h = m->height;
deselect_verticies(g);
while(1){
int i;
edge best;
float metric=2.1;
int cross = 0;
best.A=0;
best.B=0;
for(i=0;i+1<h;i++){
scan_rogue(g, m,(i+1)*w,i*w,1,w, &metric,&best,&cross);
scan_rogue(g, m,i*w,(i+1)*w,1,w, &metric,&best,&cross);
}
for(i=0;i+1<w;i++){
scan_rogue(g, m, i, i+1, w,h, &metric,&best,&cross);
scan_rogue(g, m, i+1, i, w,h, &metric,&best,&cross);
}
if(best.A && best.B){
add_edge(g,best.A,best.B);
// poison verticies against later selection
best.A->selected=1;
best.B->selected=1;
g->objective+=cross;
g->objective_lessthan = 1;
}else{
break;
}
}
deselect_verticies(g);
}
/* Initial generation setup */
static void mesh_setup(graph *g, mesh *m, int order, int divis){
int flag=0;
int wiggle=0;
int n;
m->width=3;
m->height=2;
{
while(--order){
if(flag){
flag=0;
m->height+=1;
}else{
flag=1;
m->width+=2;
}
}
}
n=m->width*m->height;
// is this divisible by our requested divisor if any?
if(divis>0 && n%divis){
while(1){
wiggle++;
if(!((n+wiggle)%divis)) break;
if(n-wiggle>6 && !((n-wiggle)%divis)){
wiggle = -wiggle;
break;
}
}
// refactor the rectangular mesh's dimensions.
{
int h = (int)sqrt(n+wiggle),w;
while( (n+wiggle)%h )h--;
if(h==1){
// double it and be content with a working result
h=2;
w=(n+wiggle);
}else{
// good factoring
w = (n+wiggle)/h;
}
m->width=w;
m->height=h;
}
}
new_board(g, m->width * m->height);
m->embed_list=0;
// used for rogue calcs
{
int x,y;
vertex *v = g->verticies;
for(y=0;y<m->height;y++)
for(x=0;x<m->width;x++){
v->x=x*50; // not a random number; other things depend on this
v->y=y*50; // not a random number; other things depend on this
v=v->next;
}
}
g->objective = 0;
g->objective_lessthan = 0;
}
static void mesh_flatten(graph *g,mesh *m){
/* a flat vector is easier to address while building the mesh */
int i;
vertex *v=g->verticies;
for(i=0;i<m->width*m->height;i++){
m->v[i]=v;
v=v->next;
}
}
static void generate_mesh(graph *g, mesh *m,
int density_128){
/* first walk a random spanning tree */
span_depth_first(g, 0, m);
/* now iterate the whole mesh adding random edges */
{
int i;
for(i=0;i<m->width*m->height;i++)
random_populate(g, i, m, 2, density_128);
}
}
void generate_simple(graph *g, int order){
mesh m;
random_seed(order);
mesh_setup(g,&m, order, 0);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
generate_mesh(g,&m,40);
randomize_verticies(g);
if((m.width*m.height)&1)
arrange_verticies_circle(g,0,0);
else
arrange_verticies_circle(g,M_PI/2,M_PI/2);
}
void generate_sparse(graph *g, int order){
mesh m;
random_seed(order);
mesh_setup(g,&m, order, 3);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
generate_mesh(g,&m,2);
mesh_nastiness(g,&m,-1);
randomize_verticies(g);
if((m.width*m.height)&1)
arrange_verticies_circle(g,0,0);
else
arrange_verticies_circle(g,M_PI/2,M_PI/2);
}
void generate_dense(graph *g, int order){
mesh m;
random_seed(order);
mesh_setup(g,&m, order, 3);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
generate_mesh(g,&m,96);
mesh_nastiness(g,&m,-1);
randomize_verticies(g);
if((m.width*m.height)&1)
arrange_verticies_circle(g,0,0);
else
arrange_verticies_circle(g,M_PI/2,M_PI/2);
}
void generate_nasty(graph *g, int order){
mesh m;
random_seed(order+8236);
mesh_setup(g,&m, order,4);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
generate_mesh(g,&m,32);
mesh_nastiness(g,&m,-1);
randomize_verticies(g);
arrange_verticies_polycircle(g,3,0,.3,25,0,25);
}
void generate_rogue(graph *g, int order){
mesh m;
random_seed(order+3005);
mesh_setup(g,&m, order,5);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
generate_mesh(g,&m,24);
mesh_add_rogues(g,&m);
randomize_verticies(g);
if(order*.03<.3)
arrange_verticies_polycircle(g,5,0,order*.03,0,0,0);
else
arrange_verticies_polycircle(g,5,0,.3,0,0,0);
}
void generate_embed(graph *g, int order){
mesh m;
random_seed(order+347);
mesh_setup(g,&m, order, 6);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
mesh_embed_nonplanar(g,&m,1,1,1);
generate_mesh(g,&m,48);
embedlist_add_to_mesh(g,&m);
randomize_verticies(g);
if(order*.03<.3)
arrange_verticies_polycircle(g,6,0,order*.03,0,0,0);
else
arrange_verticies_polycircle(g,6,0,.3,0,0,0);
}
void generate_crest(graph *g, int order){
int n;
mesh m;
random_seed(order);
mesh_setup(g,&m, order,0);
m.v=alloca(m.width*m.height * sizeof(*m.v));
mesh_flatten(g,&m);
generate_mesh(g,&m,128);
n=m.width*m.height;
arrange_verticies_circle(g,M_PI/n,M_PI/n);
}
|