File: minisim.v

package info (click to toggle)
gplcver 2.12a-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 7,604 kB
  • ctags: 9,129
  • sloc: ansic: 126,201; sh: 1,539; makefile: 86; perl: 22
file content (489 lines) | stat: -rw-r--r-- 17,688 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*-------------------
minisim.v included with the permission of Kluwer Academic Publishers

Copyright (r)

THE VERILOG(tm) HARDWARE DESCRIPTION LANGUAGE, Second Edition by
Donald E. Thomas and Philip Moorby, Copyright 1995 by Kluwer Academic
Publishers.  Used by permission.

Ordering information:
THE VERILOG(tm) HARDWARE DESCRIPTION LANGUAGE, Second Edition by
Donald E. Thomas and Philip R. Moorby, ISBN: 0-7923-9523-9, 304pp.,
 cloth, $98.00

Kluwer Academic Publishers           Phone 617-871-6600
101 Philip Drive                     fax 617-871-6528
Norwell, MA 02061                    email: kluwer@world.std.com

Disk included:
The Verilog(tm) Hardware Description Language, Second Edition includes
a disk that contains a DOS version of the Veriwell(tm) Verilog simulator
that can simulator up to 1000 lines of Verilog or 2000 total source lines
as well as other examples from the book. The simulator can also be used
to solve the exercices.
--------------------*/

//THE MINISIM EXAMPLE
module miniSim;

// element types being modeled
`define Nand 0
`define DEdgeFF 1
`define Wire 2

// literal values with strength:
//   format is 8 0-strength bits in decreasing strength order
//   followed by 8 1-strength bits in decreasing strength order
`define Strong0 16'b01000000_00000000
`define Strong1 16'b00000000_01000000
`define StrongX 16'b01111111_01111111
`define Pull0   16'b00100000_00000000
`define Pull1   16'b00000000_00100000
`define Highz0  16'b00000001_00000000
`define Highz1  16'b00000000_00000001

// three-valued logic set
`define Val0 3'd0
`define Val1 3'd1
`define ValX 3'd2

parameter
    DebugFlags =               'b11000, //set to 1 for message
//                               |||||
//  loading                   <--+||||
//  event value changes      <----+|||
//  wire calculation        <------+||
//  evaluation             <--------+|
//  scheduling           <-----------+

    IndexSize = 16,     //maximum size for index pointers
    MaxElements = 50,   //maximum number of elements
    TypeSize = 12;      //maximum number of types

reg [IndexSize-1:0]
    eventElement,             //output value change element
    evalElement,              //evaluation element on fanout
    fo0Index[1:MaxElements],  //first fanout index of eventElement
    fo1Index[1:MaxElements],  //second fanout index of eventElement
    currentList,              //current time scheduled event list
    nextList,                 //unit delay scheduled event list
    schedList[1:MaxElements]; //scheduled event list index
reg [TypeSize-1:0]
    eleType[1:MaxElements]; //element type
reg
    fo0TermNum[1:MaxElements],   //first fanout input terminal number
    fo1TermNum[1:MaxElements],   //second fanout input terminal number
    schedPresent[1:MaxElements]; //element is in scheduled event list flags
reg [15:0]
    eleStrength[1:MaxElements], //element strength indication
    outVal[1:MaxElements],      //element output value
    in0Val[1:MaxElements],      //element first input value
    in1Val[1:MaxElements],      //element second input value
    in0, in1, out, oldIn0;      //temporary value storage

integer pattern, simTime; //time keepers

initial
  begin
    // initialize variables
    pattern = 0;
    currentList = 0;
    nextList = 0;

    $display("Loading toggle circuit");
    loadElement(1, `DEdgeFF, 0, `Strong1,0,0, 4,0,0,0);
    loadElement(2, `DEdgeFF, 0, `Strong1,0,0, 3,0,0,0); 
    loadElement(3, `Nand, (`Strong0|`Strong1),
        `Strong0,`Strong1,`Strong1, 4,0,1,0); 
    loadElement(4, `DEdgeFF, (`Strong0|`Strong1),
        `Strong1,`Strong1,`Strong0, 3,0,1,0); 

    // apply stimulus and simulate
    $display("Applying 2 clocks to input element 1");
    applyClock(2, 1);
    $display("Changing element 2 to value 0 and applying 1 clock");
    setupStim(2, `Strong0);
    applyClock(1, 1);

    $display("\nLoading open-collector and pullup circuit");
    loadElement(1, `DEdgeFF, 0, `Strong1,0,0, 3,0,0,0);
    loadElement(2, `DEdgeFF, 0, `Strong0,0,0, 4,0,0,0);
    loadElement(3, `Nand, (`Strong0|`Highz1),
        `Strong0,`Strong1,`Strong1, 5,0,0,0);
    loadElement(4, `Nand, (`Strong0|`Highz1),
        `Highz1,`Strong0,`Strong1, 5,0,1,0);
    loadElement(5, `Wire, 0,
        `Strong0,`Strong0,`Highz1, 7,0,1,0);
    loadElement(6, `DEdgeFF, 0, `Pull1,0,0, 7,0,0,0);
    loadElement(7, `Wire, 0,
        `Strong0,`Pull1,`Strong0, 0,0,0,0);

    // apply stimulus and simulate
    $display("Changing element 1 to value 0");
    pattern = pattern + 1;
    setupStim(1, `Strong0);
    executeEvents;
    $display("Changing element 2 to value 1");
    pattern = pattern + 1;
    setupStim(2, `Strong1);
    executeEvents;
    $display("Changing element 2 to value X");
    pattern = pattern + 1;
    setupStim(2, `StrongX);
    executeEvents;
  end

// Initialize data structure for a given element.
task loadElement;
input [IndexSize-1:0] loadAtIndex; //element index being loaded
input [TypeSize-1:0] type;         //type of element
input [15:0] strengthCoercion;     //strength specification of element
input [15:0] oVal, i0Val, i1Val;   //output and input values
input [IndexSize-1:0] fo0, fo1;    //fanout element indexes
input fo0Term, fo1Term;            //fanout element input terminal indicators
  begin
    if (DebugFlags[4])
        $display(
            "Loading element %0d, type %0s, with initial value %s(%b_%b)",
            loadAtIndex, typeString(type),
            valString(oVal), oVal[15:8], oVal[7:0]);
    eleType[loadAtIndex] = type;
    eleStrength[loadAtIndex] = strengthCoercion;
    outVal[loadAtIndex] = oVal;
    in0Val[loadAtIndex] = i0Val;
    in1Val[loadAtIndex] = i1Val;
    fo0Index[loadAtIndex] = fo0;
    fo1Index[loadAtIndex] = fo1;
    fo0TermNum[loadAtIndex] = fo0Term;
    fo1TermNum[loadAtIndex] = fo1Term;
    schedPresent[loadAtIndex] = 0;
  end
endtask

// Given a type number, return a type string
function [32*8:1] typeString;
input [TypeSize-1:0] type;
    case (type)
      `Nand: typeString = "Nand";
      `DEdgeFF: typeString = "DEdgeFF";
      `Wire: typeString = "Wire";
      default: typeString = "*** Unknown element type";
    endcase
endfunction

// Setup a value change on an element.
task setupStim;
input [IndexSize-1:0] vcElement; //element index
input [15:0] newVal;           //new element value
  begin
    if (! schedPresent[vcElement])
      begin
        schedList[vcElement] = currentList;
        currentList = vcElement;
        schedPresent[vcElement] = 1;
      end
    outVal[vcElement] = newVal;
  end
endtask

// Setup and simulate a given number of clock pulses to a given element.
task applyClock;
input [7:0] nClocks;
input [IndexSize-1:0] vcElement;
    repeat(nClocks)
      begin
        pattern = pattern + 1;
        setupStim(vcElement, `Strong0);
        executeEvents;
        pattern = pattern + 1;
        setupStim(vcElement, `Strong1);
        executeEvents;
      end
endtask

// Execute all events in the current event list.
// Then move the events in the next event list to the current event
// list and loop back to execute these events. Continue this loop
// until no more events to execute.
// For each event executed, evaluate the two fanout elements if present.
task executeEvents;
reg [15:0] newVal;
  begin
    simTime = 0;
    while (currentList)
      begin
        eventElement = currentList;
        currentList = schedList[eventElement];
        schedPresent[eventElement] = 0;
        newVal = outVal[eventElement];
        if (DebugFlags[3])
            $display(
                "At %0d,%0d Element %0d, type %0s, changes to %s(%b_%b)",
                pattern, simTime,
                eventElement, typeString(eleType[eventElement]),
                valString(newVal), newVal[15:8], newVal[7:0]);
        if (fo0Index[eventElement]) evalFo(0);
        if (fo1Index[eventElement]) evalFo(1);
        if (! currentList) // if empty move to next time unit
          begin
            currentList = nextList;
            nextList = 0;
            simTime = simTime + 1;
          end
      end
  end
endtask

// Evaluate a fanout element by testing its type and calling the
// appropriate evaluation routine.
task evalFo;
input fanout; //first or second fanout indicator
  begin
    evalElement = fanout ? fo1Index[eventElement] : 
                           fo0Index[eventElement];
    if (DebugFlags[1])
        $display("Evaluating Element %0d type is %0s",
            evalElement, typeString(eleType[evalElement]));
    case (eleType[evalElement])
      `Nand: evalNand(fanout);
      `DEdgeFF: evalDEdgeFF(fanout);
      `Wire: evalWire(fanout);
    endcase
  end
endtask

// Store output value of event element into
// input value of evaluation element.
task storeInVal;
input fanout; //first or second fanout indicator
  begin
    // store new input value
    if (fanout ? fo1TermNum[eventElement] : fo0TermNum[eventElement])
        in1Val[evalElement] = outVal[eventElement];
    else
        in0Val[evalElement] = outVal[eventElement];
  end
endtask

// Convert a given full strength value to three-valued logic (0, 1 or X)
function [1:0] log3;
input [15:0] inVal;
    casez (inVal)
      16'b00000000_00000000: log3 = `ValX;
      16'b???????0_00000000: log3 = `Val0;
      16'b00000000_???????0: log3 = `Val1;
      default:               log3 = `ValX;
    endcase
endfunction

// Convert a given full strength value to four-valued logic (0, 1, X or Z),
// returning a 1 character string
function [8:1] valString;
input [15:0] inVal;
    case (log3(inVal))
      `Val0: valString = "0";
      `Val1: valString = "1";
      `ValX: valString = (inVal & 16'b11111110_11111110) ? "X" : "Z";
    endcase
endfunction

// Coerce a three-valued logic output value to a full output strength value
// for the scheduling of the evaluation element
function [15:0] strengthVal;
input [1:0] logVal;
    case (logVal)
      `Val0: strengthVal = eleStrength[evalElement] & 16'b11111111_00000000;
      `Val1: strengthVal = eleStrength[evalElement] & 16'b00000000_11111111;
      `ValX: strengthVal = fillBits(eleStrength[evalElement]);
    endcase
endfunction

// Given an incomplete strength value, fill the missing strength bits.
// The filling is only necessary when the value is unknown.
function [15:0] fillBits;
input [15:0] val;
  begin
    fillBits = val;
    if (log3(val) == `ValX)
      begin
        casez (val)
  16'b1???????_????????: fillBits = fillBits | 16'b11111111_00000001;
  16'b01??????_????????: fillBits = fillBits | 16'b01111111_00000001;
  16'b001?????_????????: fillBits = fillBits | 16'b00111111_00000001;
  16'b0001????_????????: fillBits = fillBits | 16'b00011111_00000001;
  16'b00001???_????????: fillBits = fillBits | 16'b00001111_00000001;
  16'b000001??_????????: fillBits = fillBits | 16'b00000111_00000001;
  16'b0000001?_????????: fillBits = fillBits | 16'b00000011_00000001;
        endcase
        casez (val)
  16'b????????_1???????: fillBits = fillBits | 16'b00000001_11111111;
  16'b????????_01??????: fillBits = fillBits | 16'b00000001_01111111;
  16'b????????_001?????: fillBits = fillBits | 16'b00000001_00111111;
  16'b????????_0001????: fillBits = fillBits | 16'b00000001_00011111;
  16'b????????_00001???: fillBits = fillBits | 16'b00000001_00001111;
  16'b????????_000001??: fillBits = fillBits | 16'b00000001_00000111;
  16'b????????_0000001?: fillBits = fillBits | 16'b00000001_00000011;
       endcase
     end
  end
endfunction

// Evaluate a 'Nand' gate primitive.
task evalNand;
input fanout; //first or second fanout indicator
  begin
    storeInVal(fanout);
    // calculate new output value
    in0 = log3(in0Val[evalElement]);
    in1 = log3(in1Val[evalElement]);
    out = ((in0 == `Val0) || (in1 == `Val0)) ?
        strengthVal(`Val1) :
        ((in0 == `ValX) || (in1 == `ValX)) ?
            strengthVal(`ValX):
            strengthVal(`Val0);
    // schedule if output value is different
    if (out != outVal[evalElement])
        schedule(out);
  end
endtask

// Evaluate a D positive edge-triggered flip flop
task evalDEdgeFF;
input fanout; //first or second fanout indicator
    // check value change is on clock input
    if (fanout ? (fo1TermNum[eventElement] == 0) :
                 (fo0TermNum[eventElement] == 0))
      begin
        // get old clock value
        oldIn0 = log3(in0Val[evalElement]);
        storeInVal(fanout);
        in0 = log3(in0Val[evalElement]);
        // test for positive edge on clock input
        if ((oldIn0 == `Val0) && (in0 == `Val1))
          begin
            out = strengthVal(log3(in1Val[evalElement]));
            if (out != outVal[evalElement])
              schedule(out);
          end
      end
    else
        storeInVal(fanout); // store data input value
endtask

// Evaluate a wire with full strength values
task evalWire;
input fanout;
reg [7:0] mask;
  begin
    storeInVal(fanout);

    in0 = in0Val[evalElement];
    in1 = in1Val[evalElement];
    mask = getMask(in0[15:8]) & getMask(in0[7:0]) &
           getMask(in1[15:8]) & getMask(in1[7:0]);
    out = fillBits((in0 | in1) & {mask, mask});

    if (out != outVal[evalElement])
        schedule(out);

    if (DebugFlags[2])
        $display("in0 = %b_%b\nin1 = %b_%b\nmask= %b %b\nout = %b_%b",
            in0[15:8],in0[7:0], in1[15:8],in1[7:0],
            mask,mask, out[15:8],out[7:0]);
  end
endtask

// Given either a 0-strength or 1-strength half of a strength value
// return a masking pattern for use in a wire evaluation.
function [7:0] getMask;
input [7:0] halfVal; //half a full strength value
    casez (halfVal)
      8'b???????1: getMask = 8'b11111111;
      8'b??????10: getMask = 8'b11111110;
      8'b?????100: getMask = 8'b11111100;
      8'b????1000: getMask = 8'b11111000;
      8'b???10000: getMask = 8'b11110000;
      8'b??100000: getMask = 8'b11100000;
      8'b?1000000: getMask = 8'b11000000;
      8'b10000000: getMask = 8'b10000000;
      8'b00000000: getMask = 8'b11111111;
    endcase
endfunction

// Schedule the evaluation element to change to a new value.
// If the element is already scheduled then just insert the new value.
task schedule;
input [15:0] newVal; // new value to change to
  begin
    if (DebugFlags[0])
        $display(
            "Element %0d, type %0s, scheduled to change to %s(%b_%b)",
            evalElement, typeString(eleType[evalElement]),
            valString(newVal), newVal[15:8], newVal[7:0]);
    if (! schedPresent[evalElement])
      begin
        schedList[evalElement] = nextList;
        schedPresent[evalElement] = 1;
        nextList = evalElement;
      end
    outVal[evalElement] = newVal;
  end
endtask
endmodule

/*******************  PLEASE NOTE:  ************************************

The values printed out in the book section 7.1.3 have the wrong
format. The 0 and 1 strength bits need to be swapped around. For
example, the first value printed in the book should read
1(00000000_01000000) and not 1(0100000_00000000). The value format you
get from running the above minisim description through Verilog should
be correct.

Here is a listing of the results:

Loading toggle circuit
Loading element 1, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 2, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 3, type Nand, with initial value 0(01000000_00000000)
Loading element 4, type DEdgeFF, with initial value 1(00000000_01000000)
Applying 2 clocks to input element 1
At 1,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 2,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
At 2,1 Element 4, type DEdgeFF, changes to 0(01000000_00000000)
At 2,2 Element 3, type Nand, changes to 1(00000000_01000000)
At 3,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 4,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
At 4,1 Element 4, type DEdgeFF, changes to 1(00000000_01000000)
At 4,2 Element 3, type Nand, changes to 0(01000000_00000000)
Changing element 2 to value 0 and applying 1 clock
At 5,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 5,0 Element 2, type DEdgeFF, changes to 0(01000000_00000000)
At 5,1 Element 3, type Nand, changes to 1(00000000_01000000)
At 6,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)

Loading open-collector and pullup circuit
Loading element 1, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 2, type DEdgeFF, with initial value 0(01000000_00000000)
Loading element 3, type Nand, with initial value 0(01000000_00000000)
Loading element 4, type Nand, with initial value Z(00000000_00000001)
Loading element 5, type Wire, with initial value 0(01000000_00000000)
Loading element 6, type DEdgeFF, with initial value 1(00000000_00100000)
Loading element 7, type Wire, with initial value 0(01000000_00000000)
Changing element 1 to value 0
At 7,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 7,1 Element 3, type Nand, changes to Z(00000000_00000001)
At 7,2 Element 5, type Wire, changes to Z(00000000_00000001)
At 7,3 Element 7, type Wire, changes to 1(00000000_00100000)
Changing element 2 to value 1
At 8,0 Element 2, type DEdgeFF, changes to 1(00000000_01000000)
At 8,1 Element 4, type Nand, changes to 0(01000000_00000000)
At 8,2 Element 5, type Wire, changes to 0(01000000_00000000)
At 8,3 Element 7, type Wire, changes to 0(01000000_00000000)
Changing element 2 to value X
At 9,0 Element 2, type DEdgeFF, changes to X(01111111_01111111)
At 9,1 Element 4, type Nand, changes to X(01111111_00000001)
At 9,2 Element 5, type Wire, changes to X(01111111_00000001)
At 9,3 Element 7, type Wire, changes to X(01111111_00111111)
*****************************************************************/