1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
/*-------------------
minisim.v included with the permission of Kluwer Academic Publishers
Copyright (r)
THE VERILOG(tm) HARDWARE DESCRIPTION LANGUAGE, Second Edition by
Donald E. Thomas and Philip Moorby, Copyright 1995 by Kluwer Academic
Publishers. Used by permission.
Ordering information:
THE VERILOG(tm) HARDWARE DESCRIPTION LANGUAGE, Second Edition by
Donald E. Thomas and Philip R. Moorby, ISBN: 0-7923-9523-9, 304pp.,
cloth, $98.00
Kluwer Academic Publishers Phone 617-871-6600
101 Philip Drive fax 617-871-6528
Norwell, MA 02061 email: kluwer@world.std.com
Disk included:
The Verilog(tm) Hardware Description Language, Second Edition includes
a disk that contains a DOS version of the Veriwell(tm) Verilog simulator
that can simulator up to 1000 lines of Verilog or 2000 total source lines
as well as other examples from the book. The simulator can also be used
to solve the exercices.
--------------------*/
//THE MINISIM EXAMPLE
module miniSim;
// element types being modeled
`define Nand 0
`define DEdgeFF 1
`define Wire 2
// literal values with strength:
// format is 8 0-strength bits in decreasing strength order
// followed by 8 1-strength bits in decreasing strength order
`define Strong0 16'b01000000_00000000
`define Strong1 16'b00000000_01000000
`define StrongX 16'b01111111_01111111
`define Pull0 16'b00100000_00000000
`define Pull1 16'b00000000_00100000
`define Highz0 16'b00000001_00000000
`define Highz1 16'b00000000_00000001
// three-valued logic set
`define Val0 3'd0
`define Val1 3'd1
`define ValX 3'd2
parameter
DebugFlags = 'b11000, //set to 1 for message
// |||||
// loading <--+||||
// event value changes <----+|||
// wire calculation <------+||
// evaluation <--------+|
// scheduling <-----------+
IndexSize = 16, //maximum size for index pointers
MaxElements = 50, //maximum number of elements
TypeSize = 12; //maximum number of types
reg [IndexSize-1:0]
eventElement, //output value change element
evalElement, //evaluation element on fanout
fo0Index[1:MaxElements], //first fanout index of eventElement
fo1Index[1:MaxElements], //second fanout index of eventElement
currentList, //current time scheduled event list
nextList, //unit delay scheduled event list
schedList[1:MaxElements]; //scheduled event list index
reg [TypeSize-1:0]
eleType[1:MaxElements]; //element type
reg
fo0TermNum[1:MaxElements], //first fanout input terminal number
fo1TermNum[1:MaxElements], //second fanout input terminal number
schedPresent[1:MaxElements]; //element is in scheduled event list flags
reg [15:0]
eleStrength[1:MaxElements], //element strength indication
outVal[1:MaxElements], //element output value
in0Val[1:MaxElements], //element first input value
in1Val[1:MaxElements], //element second input value
in0, in1, out, oldIn0; //temporary value storage
integer pattern, simTime; //time keepers
initial
begin
// initialize variables
pattern = 0;
currentList = 0;
nextList = 0;
$display("Loading toggle circuit");
loadElement(1, `DEdgeFF, 0, `Strong1,0,0, 4,0,0,0);
loadElement(2, `DEdgeFF, 0, `Strong1,0,0, 3,0,0,0);
loadElement(3, `Nand, (`Strong0|`Strong1),
`Strong0,`Strong1,`Strong1, 4,0,1,0);
loadElement(4, `DEdgeFF, (`Strong0|`Strong1),
`Strong1,`Strong1,`Strong0, 3,0,1,0);
// apply stimulus and simulate
$display("Applying 2 clocks to input element 1");
applyClock(2, 1);
$display("Changing element 2 to value 0 and applying 1 clock");
setupStim(2, `Strong0);
applyClock(1, 1);
$display("\nLoading open-collector and pullup circuit");
loadElement(1, `DEdgeFF, 0, `Strong1,0,0, 3,0,0,0);
loadElement(2, `DEdgeFF, 0, `Strong0,0,0, 4,0,0,0);
loadElement(3, `Nand, (`Strong0|`Highz1),
`Strong0,`Strong1,`Strong1, 5,0,0,0);
loadElement(4, `Nand, (`Strong0|`Highz1),
`Highz1,`Strong0,`Strong1, 5,0,1,0);
loadElement(5, `Wire, 0,
`Strong0,`Strong0,`Highz1, 7,0,1,0);
loadElement(6, `DEdgeFF, 0, `Pull1,0,0, 7,0,0,0);
loadElement(7, `Wire, 0,
`Strong0,`Pull1,`Strong0, 0,0,0,0);
// apply stimulus and simulate
$display("Changing element 1 to value 0");
pattern = pattern + 1;
setupStim(1, `Strong0);
executeEvents;
$display("Changing element 2 to value 1");
pattern = pattern + 1;
setupStim(2, `Strong1);
executeEvents;
$display("Changing element 2 to value X");
pattern = pattern + 1;
setupStim(2, `StrongX);
executeEvents;
end
// Initialize data structure for a given element.
task loadElement;
input [IndexSize-1:0] loadAtIndex; //element index being loaded
input [TypeSize-1:0] type; //type of element
input [15:0] strengthCoercion; //strength specification of element
input [15:0] oVal, i0Val, i1Val; //output and input values
input [IndexSize-1:0] fo0, fo1; //fanout element indexes
input fo0Term, fo1Term; //fanout element input terminal indicators
begin
if (DebugFlags[4])
$display(
"Loading element %0d, type %0s, with initial value %s(%b_%b)",
loadAtIndex, typeString(type),
valString(oVal), oVal[15:8], oVal[7:0]);
eleType[loadAtIndex] = type;
eleStrength[loadAtIndex] = strengthCoercion;
outVal[loadAtIndex] = oVal;
in0Val[loadAtIndex] = i0Val;
in1Val[loadAtIndex] = i1Val;
fo0Index[loadAtIndex] = fo0;
fo1Index[loadAtIndex] = fo1;
fo0TermNum[loadAtIndex] = fo0Term;
fo1TermNum[loadAtIndex] = fo1Term;
schedPresent[loadAtIndex] = 0;
end
endtask
// Given a type number, return a type string
function [32*8:1] typeString;
input [TypeSize-1:0] type;
case (type)
`Nand: typeString = "Nand";
`DEdgeFF: typeString = "DEdgeFF";
`Wire: typeString = "Wire";
default: typeString = "*** Unknown element type";
endcase
endfunction
// Setup a value change on an element.
task setupStim;
input [IndexSize-1:0] vcElement; //element index
input [15:0] newVal; //new element value
begin
if (! schedPresent[vcElement])
begin
schedList[vcElement] = currentList;
currentList = vcElement;
schedPresent[vcElement] = 1;
end
outVal[vcElement] = newVal;
end
endtask
// Setup and simulate a given number of clock pulses to a given element.
task applyClock;
input [7:0] nClocks;
input [IndexSize-1:0] vcElement;
repeat(nClocks)
begin
pattern = pattern + 1;
setupStim(vcElement, `Strong0);
executeEvents;
pattern = pattern + 1;
setupStim(vcElement, `Strong1);
executeEvents;
end
endtask
// Execute all events in the current event list.
// Then move the events in the next event list to the current event
// list and loop back to execute these events. Continue this loop
// until no more events to execute.
// For each event executed, evaluate the two fanout elements if present.
task executeEvents;
reg [15:0] newVal;
begin
simTime = 0;
while (currentList)
begin
eventElement = currentList;
currentList = schedList[eventElement];
schedPresent[eventElement] = 0;
newVal = outVal[eventElement];
if (DebugFlags[3])
$display(
"At %0d,%0d Element %0d, type %0s, changes to %s(%b_%b)",
pattern, simTime,
eventElement, typeString(eleType[eventElement]),
valString(newVal), newVal[15:8], newVal[7:0]);
if (fo0Index[eventElement]) evalFo(0);
if (fo1Index[eventElement]) evalFo(1);
if (! currentList) // if empty move to next time unit
begin
currentList = nextList;
nextList = 0;
simTime = simTime + 1;
end
end
end
endtask
// Evaluate a fanout element by testing its type and calling the
// appropriate evaluation routine.
task evalFo;
input fanout; //first or second fanout indicator
begin
evalElement = fanout ? fo1Index[eventElement] :
fo0Index[eventElement];
if (DebugFlags[1])
$display("Evaluating Element %0d type is %0s",
evalElement, typeString(eleType[evalElement]));
case (eleType[evalElement])
`Nand: evalNand(fanout);
`DEdgeFF: evalDEdgeFF(fanout);
`Wire: evalWire(fanout);
endcase
end
endtask
// Store output value of event element into
// input value of evaluation element.
task storeInVal;
input fanout; //first or second fanout indicator
begin
// store new input value
if (fanout ? fo1TermNum[eventElement] : fo0TermNum[eventElement])
in1Val[evalElement] = outVal[eventElement];
else
in0Val[evalElement] = outVal[eventElement];
end
endtask
// Convert a given full strength value to three-valued logic (0, 1 or X)
function [1:0] log3;
input [15:0] inVal;
casez (inVal)
16'b00000000_00000000: log3 = `ValX;
16'b???????0_00000000: log3 = `Val0;
16'b00000000_???????0: log3 = `Val1;
default: log3 = `ValX;
endcase
endfunction
// Convert a given full strength value to four-valued logic (0, 1, X or Z),
// returning a 1 character string
function [8:1] valString;
input [15:0] inVal;
case (log3(inVal))
`Val0: valString = "0";
`Val1: valString = "1";
`ValX: valString = (inVal & 16'b11111110_11111110) ? "X" : "Z";
endcase
endfunction
// Coerce a three-valued logic output value to a full output strength value
// for the scheduling of the evaluation element
function [15:0] strengthVal;
input [1:0] logVal;
case (logVal)
`Val0: strengthVal = eleStrength[evalElement] & 16'b11111111_00000000;
`Val1: strengthVal = eleStrength[evalElement] & 16'b00000000_11111111;
`ValX: strengthVal = fillBits(eleStrength[evalElement]);
endcase
endfunction
// Given an incomplete strength value, fill the missing strength bits.
// The filling is only necessary when the value is unknown.
function [15:0] fillBits;
input [15:0] val;
begin
fillBits = val;
if (log3(val) == `ValX)
begin
casez (val)
16'b1???????_????????: fillBits = fillBits | 16'b11111111_00000001;
16'b01??????_????????: fillBits = fillBits | 16'b01111111_00000001;
16'b001?????_????????: fillBits = fillBits | 16'b00111111_00000001;
16'b0001????_????????: fillBits = fillBits | 16'b00011111_00000001;
16'b00001???_????????: fillBits = fillBits | 16'b00001111_00000001;
16'b000001??_????????: fillBits = fillBits | 16'b00000111_00000001;
16'b0000001?_????????: fillBits = fillBits | 16'b00000011_00000001;
endcase
casez (val)
16'b????????_1???????: fillBits = fillBits | 16'b00000001_11111111;
16'b????????_01??????: fillBits = fillBits | 16'b00000001_01111111;
16'b????????_001?????: fillBits = fillBits | 16'b00000001_00111111;
16'b????????_0001????: fillBits = fillBits | 16'b00000001_00011111;
16'b????????_00001???: fillBits = fillBits | 16'b00000001_00001111;
16'b????????_000001??: fillBits = fillBits | 16'b00000001_00000111;
16'b????????_0000001?: fillBits = fillBits | 16'b00000001_00000011;
endcase
end
end
endfunction
// Evaluate a 'Nand' gate primitive.
task evalNand;
input fanout; //first or second fanout indicator
begin
storeInVal(fanout);
// calculate new output value
in0 = log3(in0Val[evalElement]);
in1 = log3(in1Val[evalElement]);
out = ((in0 == `Val0) || (in1 == `Val0)) ?
strengthVal(`Val1) :
((in0 == `ValX) || (in1 == `ValX)) ?
strengthVal(`ValX):
strengthVal(`Val0);
// schedule if output value is different
if (out != outVal[evalElement])
schedule(out);
end
endtask
// Evaluate a D positive edge-triggered flip flop
task evalDEdgeFF;
input fanout; //first or second fanout indicator
// check value change is on clock input
if (fanout ? (fo1TermNum[eventElement] == 0) :
(fo0TermNum[eventElement] == 0))
begin
// get old clock value
oldIn0 = log3(in0Val[evalElement]);
storeInVal(fanout);
in0 = log3(in0Val[evalElement]);
// test for positive edge on clock input
if ((oldIn0 == `Val0) && (in0 == `Val1))
begin
out = strengthVal(log3(in1Val[evalElement]));
if (out != outVal[evalElement])
schedule(out);
end
end
else
storeInVal(fanout); // store data input value
endtask
// Evaluate a wire with full strength values
task evalWire;
input fanout;
reg [7:0] mask;
begin
storeInVal(fanout);
in0 = in0Val[evalElement];
in1 = in1Val[evalElement];
mask = getMask(in0[15:8]) & getMask(in0[7:0]) &
getMask(in1[15:8]) & getMask(in1[7:0]);
out = fillBits((in0 | in1) & {mask, mask});
if (out != outVal[evalElement])
schedule(out);
if (DebugFlags[2])
$display("in0 = %b_%b\nin1 = %b_%b\nmask= %b %b\nout = %b_%b",
in0[15:8],in0[7:0], in1[15:8],in1[7:0],
mask,mask, out[15:8],out[7:0]);
end
endtask
// Given either a 0-strength or 1-strength half of a strength value
// return a masking pattern for use in a wire evaluation.
function [7:0] getMask;
input [7:0] halfVal; //half a full strength value
casez (halfVal)
8'b???????1: getMask = 8'b11111111;
8'b??????10: getMask = 8'b11111110;
8'b?????100: getMask = 8'b11111100;
8'b????1000: getMask = 8'b11111000;
8'b???10000: getMask = 8'b11110000;
8'b??100000: getMask = 8'b11100000;
8'b?1000000: getMask = 8'b11000000;
8'b10000000: getMask = 8'b10000000;
8'b00000000: getMask = 8'b11111111;
endcase
endfunction
// Schedule the evaluation element to change to a new value.
// If the element is already scheduled then just insert the new value.
task schedule;
input [15:0] newVal; // new value to change to
begin
if (DebugFlags[0])
$display(
"Element %0d, type %0s, scheduled to change to %s(%b_%b)",
evalElement, typeString(eleType[evalElement]),
valString(newVal), newVal[15:8], newVal[7:0]);
if (! schedPresent[evalElement])
begin
schedList[evalElement] = nextList;
schedPresent[evalElement] = 1;
nextList = evalElement;
end
outVal[evalElement] = newVal;
end
endtask
endmodule
/******************* PLEASE NOTE: ************************************
The values printed out in the book section 7.1.3 have the wrong
format. The 0 and 1 strength bits need to be swapped around. For
example, the first value printed in the book should read
1(00000000_01000000) and not 1(0100000_00000000). The value format you
get from running the above minisim description through Verilog should
be correct.
Here is a listing of the results:
Loading toggle circuit
Loading element 1, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 2, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 3, type Nand, with initial value 0(01000000_00000000)
Loading element 4, type DEdgeFF, with initial value 1(00000000_01000000)
Applying 2 clocks to input element 1
At 1,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 2,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
At 2,1 Element 4, type DEdgeFF, changes to 0(01000000_00000000)
At 2,2 Element 3, type Nand, changes to 1(00000000_01000000)
At 3,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 4,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
At 4,1 Element 4, type DEdgeFF, changes to 1(00000000_01000000)
At 4,2 Element 3, type Nand, changes to 0(01000000_00000000)
Changing element 2 to value 0 and applying 1 clock
At 5,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 5,0 Element 2, type DEdgeFF, changes to 0(01000000_00000000)
At 5,1 Element 3, type Nand, changes to 1(00000000_01000000)
At 6,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
Loading open-collector and pullup circuit
Loading element 1, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 2, type DEdgeFF, with initial value 0(01000000_00000000)
Loading element 3, type Nand, with initial value 0(01000000_00000000)
Loading element 4, type Nand, with initial value Z(00000000_00000001)
Loading element 5, type Wire, with initial value 0(01000000_00000000)
Loading element 6, type DEdgeFF, with initial value 1(00000000_00100000)
Loading element 7, type Wire, with initial value 0(01000000_00000000)
Changing element 1 to value 0
At 7,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 7,1 Element 3, type Nand, changes to Z(00000000_00000001)
At 7,2 Element 5, type Wire, changes to Z(00000000_00000001)
At 7,3 Element 7, type Wire, changes to 1(00000000_00100000)
Changing element 2 to value 1
At 8,0 Element 2, type DEdgeFF, changes to 1(00000000_01000000)
At 8,1 Element 4, type Nand, changes to 0(01000000_00000000)
At 8,2 Element 5, type Wire, changes to 0(01000000_00000000)
At 8,3 Element 7, type Wire, changes to 0(01000000_00000000)
Changing element 2 to value X
At 9,0 Element 2, type DEdgeFF, changes to X(01111111_01111111)
At 9,1 Element 4, type Nand, changes to X(01111111_00000001)
At 9,2 Element 5, type Wire, changes to X(01111111_00000001)
At 9,3 Element 7, type Wire, changes to X(01111111_00111111)
*****************************************************************/
|