1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
lmplot2 <- function(
x,
which = 1:5,
caption = c("Residuals vs Fitted", "Normal Q-Q plot",
"Scale-Location plot", "Cook's distance plot"),
panel = panel.smooth,
sub.caption = deparse(x$call),
main = "",
ask = interactive() && nb.fig < length(which)
&& .Device != "postscript",
...,
id.n = 3,
labels.id = names(residuals(x)),
cex.id = 0.75,
band=TRUE,
rug=TRUE,
width=1/10,
max.n=5000
)
{
if (!inherits(x, "lm"))
stop("Use only with 'lm' objects")
show <- rep(FALSE, 5)
if(!is.numeric(which) || any(which < 1) || any(which > 5))
stop("`which' must be in 1:5")
show[which] <- TRUE
r <- residuals(x)
n <- length(r)
if(inherits(x,"glm"))
yh <- predict(x) # != fitted() for glm
else
yh <- fitted(x)
if (any(show[2:4]))
s <- if(inherits(x, "rlm")) x$s else sqrt(deviance(x)/df.residual(x))
if (any(show[2:3]))
{
ylab23 <- if(inherits(x, "glm"))
"Std. deviance resid." else "Standardized residuals"
hii <- lm.influence(x)$hat
w <- weights(x)
# r.w := weighted.residuals(x):
r.w <- if(is.null(w)) r else (sqrt(w)*r)[w!=0]
rs <- r.w/(s * sqrt(1 - hii))
}
if (any(show[c(1,3)]))
l.fit <- if(inherits(x,"glm"))
"Predicted values" else "Fitted values"
if (is.null(id.n))
id.n <- 0
else {
id.n <- as.integer(id.n)
if(id.n < 0 || id.n > n)
stop(paste("`id.n' must be in { 1,..,",n,"}"))
}
if(id.n > 0) {
if(is.null(labels.id))
labels.id <- paste(1:n)
iid <- 1:id.n
show.r <- order(-abs(r))[iid]
if(any(show[2:3]))
show.rs <- order(-abs(rs))[iid]
text.id <- function(x,y, ind, adj.x = FALSE)
text(x - if(adj.x) strwidth(" ")*cex.id else 0, y, labels.id[ind],
cex = cex.id, xpd = TRUE, adj = if(adj.x) 1)
}
nb.fig <- prod(par("mfcol"))
one.fig <- prod(par("mfcol")) == 1
if (ask) {
op <- par(ask = TRUE)
on.exit(par(op))
}
##---------- Do the individual plots : ----------
if (show[1]) {
ylim <- range(r)
if(id.n > 0)
ylim <- ylim + c(-1,1)* 0.08 * diff(ylim)
plot(yh, r, xlab = l.fit, ylab = "Residuals", main = main,
ylim = ylim, type = "n", ...)
panel(yh, r, ...)
if(rug) rug(yh) ## GRW 2001-06-08
if(band) bandplot(yh,r,add=TRUE,width=width) ## GRW 2001-06-08
if (one.fig)
title(sub = sub.caption, ...)
mtext(caption[1], 3, 0.25)
if(id.n > 0) {
y.id <- r[show.r]
y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3
text.id(yh[show.r], y.id, show.r, adj.x = TRUE)
}
abline(h = 0, lty = 3, col = "gray")
}
if (show[2]) {
ylim <- range(rs)
ylim[2] <- ylim[2] + diff(ylim) * 0.075
qq <- qqnorm(rs, main = main, ylab = ylab23, ylim = ylim, ...)
qqline(rs)
if (one.fig)
title(sub = sub.caption, ...)
mtext(caption[2], 3, 0.25)
if(id.n > 0)
text.id(qq$x[show.rs], qq$y[show.rs], show.rs, adj.x = TRUE)
}
if (show[3]) {
sqrtabsr <- sqrt(abs(rs))
ylim <- c(0, max(sqrtabsr))
yl <- as.expression(substitute(sqrt(abs(YL)), list(YL=as.name(ylab23))))
yhn0 <- if(is.null(w)) yh else yh[w!=0]
plot(yhn0, sqrtabsr, xlab = l.fit, ylab = yl, main = main,
ylim = ylim, type = "n", ...)
panel(yhn0, sqrtabsr, ...)
abline(h=mean(sqrtabsr),lty = 3, col = "gray")
if(rug) rug(yh) ## GRW 2001-06-08
if(band) bandplot(yhn0,sqrtabsr,add=TRUE) ## GRW 2001-06-08
if (one.fig)
title(sub = sub.caption, ...)
mtext(caption[3], 3, 0.25)
if(id.n > 0)
text.id(yhn0[show.rs], sqrtabsr[show.rs], show.rs, adj.x = TRUE)
}
if (show[4]) {
cook <- cooks.distance(x, sd=s)
if(id.n > 0) {
show.r <- order(-cook)[iid]# index of largest `id.n' ones
ymx <- cook[show.r[1]] * 1.075
} else ymx <- max(cook)
plot(cook, type = "h", ylim = c(0, ymx), main = main,
xlab = "Obs. number", ylab = "Cook's distance", ...)
if (one.fig)
title(sub = sub.caption, ...)
mtext(caption[4], 3, 0.25)
if(id.n > 0)
text.id(show.r, cook[show.r] + 0.4*cex.id * strheight(" "), show.r)
}
if (show[5])
{
## plot residuals against each predictor ##
data <- model.frame(x)
for( i in 1:ncol(data) )
{
test <- try(
{
plot.default( x=data[,i], y=r,
xlab=names(data)[i], ylab="Residuals", type="n")
panel( data[,i], r, ... )
if(rug) rug(data[,i])
if(band) bandplot(data[,i],r,add=TRUE)
abline(h=0,lty = 3, col = "gray")
}
)
}
}
if (!one.fig && par("oma")[3] >= 1)
mtext(sub.caption, outer = TRUE, cex = 1.25)
invisible()
}
|