1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="hevea 1.08">
<LINK rel="stylesheet" type="text/css" href="gprolog.css">
<TITLE>
Arithmetic
</TITLE>
</HEAD>
<BODY TEXT=black BGCOLOR=white>
<A HREF="gprolog028.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="gprolog023.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="gprolog030.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
<HR>
<H3 CLASS="subsection"><A NAME="htoc87">7.6</A> Arithmetic</H3><UL>
<LI><A HREF="gprolog029.html#toc60">Evaluation of an arithmetic expression</A>
<LI><A HREF="gprolog029.html#toc61"><TT>(is)/2</TT> - evaluate expression</A>
<LI><A HREF="gprolog029.html#toc62"><TT>(=:=)/2</TT> - arithmetic equal,
<TT>(=\=)/2</TT> - arithmetic not equal,<BR>
<TT>(<)/2</TT> - arithmetic less than,
<TT>(=<)/2</TT> - arithmetic less than or equal to,<BR>
<TT>(>)/2</TT> - arithmetic greater than,
<TT>(>=)/2</TT> - arithmetic greater than or equal to</A>
</UL>
<A NAME="toc60"></A>
<H4 CLASS="subsubsection"><A NAME="htoc88">7.6.1</A> Evaluation of an arithmetic expression</H4>
<A NAME="Evaluation-of-an-arithmetic-expression"></A>
An arithmetic expression is a Prolog term built from numbers,
variables, and functors (or operators) that represent arithmetic functions.
When an expression is evaluated each variable must be bound to a
non-variable expression. An expression evaluates to a number, which may be
an integer or a floating point number. The following table details the
components of an arithmetic expression, how they are evaluated, the types
expected/returned and if they are ISO or an extension:<BR>
<TABLE BORDER=1 CELLSPACING=0 CELLPADDING=1>
<TR><TD VALIGN=top ALIGN=left NOWRAP>Expression</TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">Result = <I>eval</I>(Expression)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>Signature</TD>
<TD VALIGN=top ALIGN=center NOWRAP>ISO</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>Variable</TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">must be bound to a non-variable expression <TT>E</TT>.
<BR>
The result is <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>integer number</TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">this number</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP>floating point number</TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">this number</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>+ E</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>- E</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">- <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>inc(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E</TT>) + 1</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>dec(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E</TT>) - 1</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 + E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) + <I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 - E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) - <I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 * E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) * <I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 / E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) / <I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 // E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>rnd</I>(<I>eval</I>(<TT>E1</TT>) /
<I>eval</I>(<TT>E2</TT>))</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 rem E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) -
(<I>rnd</I>(<I>eval</I>(<TT>E1</TT>) /
<I>eval</I>(<TT>E2</TT>))*<I>eval</I>(<TT>E2</TT>))</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I →
I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 mod E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) - (
⌊<I>eval</I>(<TT>E1</TT>) / <I>eval</I>(<TT>E2</TT>)⌋
*<I>eval</I>(<TT>E2</TT>))</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 /\ E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) bitwise_and
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 \/ E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) bitwise_or
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 ^ E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) bitwise_xor
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>\ E</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">bitwise_not <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I →
I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 << E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) integer_shift_left
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 >> E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) integer_shift_right
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>I, I → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>abs(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">absolute value of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF
→ IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>sign(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">sign of <I>eval</I>(<TT>E</TT>) (-1 if < 0, 0 if = 0,
+1 if > 0)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → IF</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>min(E1,E2)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">minimal value between <I>eval</I>(<TT>E1</TT>) and
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → ?</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>max(E1,E2)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">maximal value between <I>eval</I>(<TT>E1</TT>) and
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → ?</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>E1 ** E2</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>eval</I>(<TT>E1</TT>) raised to the power of
<I>eval</I>(<TT>E2</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF, IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>sqrt(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">square root of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF
→ F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>atan(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">arc tangent of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF
→ F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>cos(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">cosine of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>acos(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">arc cosine of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>sin(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">sine of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>asin(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">arc sine of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>N</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>exp(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft"><I>e</I> raised to the power of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>log(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">natural logarithms of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF
→ F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>float(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">the floating point number equal to
<I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>IF → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>ceiling(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">rounds <I>eval</I>(<TT>E</TT>) upward to the
nearest integer</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>floor(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">rounds <I>eval</I>(<TT>E</TT>) downward to the
nearest integer</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>round(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">rounds <I>eval</I>(<TT>E</TT>) to the nearest integer</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F → I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>truncate(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">the integer value of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F
→ I</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>float_fractional_part(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">the float equal to the fractional part
of <I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR>
<TR><TD VALIGN=top ALIGN=left NOWRAP><TT>float_integer_part(E)</TT></TD>
<TD VALIGN=top ALIGN=left><DIV CLASS="flushleft">the float equal to the integer part of
<I>eval</I>(<TT>E</TT>)</DIV></TD>
<TD VALIGN=top ALIGN=center NOWRAP>F → F</TD>
<TD VALIGN=top ALIGN=center NOWRAP>Y</TD>
</TR></TABLE><BR>
The meaning of the signature field is as follows:
<UL CLASS="itemize"><LI CLASS="li-itemize">I → I: unary function, the operand must be an integer and
the result is an integer.<BR>
<BR>
<LI CLASS="li-itemize">F → F: unary function, the operand must be a floating
point number and the result is a floating point number.<BR>
<BR>
<LI CLASS="li-itemize">F → I: unary function, the operand must be a floating
point number and the result is an integer.<BR>
<BR>
<LI CLASS="li-itemize">IF → F: unary function, the operand can be an integer or a
floating point number and the result is a floating point number.<BR>
<BR>
<LI CLASS="li-itemize">IF → IF: unary function, the operand can be an integer or
a floating point number and the result has the same type as the operand.<BR>
<BR>
<LI CLASS="li-itemize">I, I → I: binary function: each operand must be an integer
and the result is an integer.<BR>
<BR>
<LI CLASS="li-itemize">IF, IF → IF: binary function: each operand can be an
integer or a floating point number and the result is a floating point number
if at least one operand is a floating point number, an integer otherwise.<BR>
<BR>
<LI CLASS="li-itemize">IF, IF → ?: binary function: each operand can be an
integer or a floating point number and the result has the same type as the
selected operand. This is used for <TT>min</TT> and <TT>max</TT>. Note that
in case of equality between an integer and a floating point number the
result is an integer.</UL>
<TT>is</TT>, <TT>+</TT>, <TT>-</TT>, <TT>*</TT>, <TT>//</TT>, <TT>/</TT>,
<TT>rem</TT>, and <TT>mod</TT> are predefined infix operators. <TT>+</TT>
and <TT>-</TT> are predefined prefix operators (section <A HREF="gprolog037.html#op/3:(Term-input/output)">7.14.10</A>).<BR>
<BR>
<B>Integer division rounding function</B>: the integer division rounding
function <TT><I>rnd</I>(X)</TT> rounds the floating point number
<TT>X</TT> to an integer. There are two possible definitions (depending on
the target machine) for this function which differ on negative numbers:
<UL CLASS="itemize"><LI CLASS="li-itemize"><TT><I>rnd</I>(X)</TT> = integer part of <TT>X</TT>, e.g.
<TT><I>rnd</I>(-1.5)</TT> = <TT>-1</TT> (round toward 0)<BR>
<BR>
<LI CLASS="li-itemize"><TT><I>rnd</I>(X)</TT> = ⌊<TT>X</TT>⌋, e.g.
<TT><I>rnd</I>(-1.5)</TT> = <TT>-2</TT> (round toward −∞)</UL>
The definition of this function determines the precise definition of the
integer division <TT>(//)/2</TT> and of the integer remainder
<TT>(rem)/2</TT>. Rounding toward zero is the most common case. In any case
it is possible to test the value (<TT>toward_zero</TT> or <TT>down</TT>) of
the <TT>integer_rounding_function</TT> Prolog flag to determine which
function being used (section <A HREF="gprolog045.html#set-prolog-flag/2">7.22.1</A>).<BR>
<BR>
<B>Fast mathematical mode</B>: in order to speed-up integer computations,
the GNU Prolog compiler can generate faster code when invoked with the
<TT>–fast-math</TT> option (section <A HREF="gprolog008.html#Using-the-compiler">3.4.3</A>). In this mode only
integer operations are allowed and a variable in an expression must be bound
at evaluation time to an integer. No type checking is done. <BR>
<BR>
<B>Errors</B><BR>
<TABLE CELLSPACING=2 CELLPADDING=0>
<TR><TD BGCOLOR=black COLSPAN=3><TABLE BORDER=0 WIDTH="100%" CELLSPACING=0 CELLPADDING=1><TR><TD></TD></TR></TABLE></TD>
</TR>
<TR><TD VALIGN=top ALIGN=left>a sub-expression <TT>E</TT> is a variable</TD>
<TD VALIGN=top ALIGN=center NOWRAP> </TD>
<TD VALIGN=top ALIGN=left><TT>instantiation_error</TT></TD>
</TR>
<TR><TD BGCOLOR=black COLSPAN=3><TABLE BORDER=0 WIDTH="100%" CELLSPACING=0 CELLPADDING=1><TR><TD></TD></TR></TABLE></TD>
</TR>
<TR><TD VALIGN=top ALIGN=left>a sub-expression <TT>E</TT> is neither a number nor an evaluable
functor</TD>
<TD VALIGN=top ALIGN=center NOWRAP> </TD>
<TD VALIGN=top ALIGN=left><TT>type_error(evaluable, E)</TT></TD>
</TR>
<TR><TD BGCOLOR=black COLSPAN=3><TABLE BORDER=0 WIDTH="100%" CELLSPACING=0 CELLPADDING=1><TR><TD></TD></TR></TABLE></TD>
</TR>
<TR><TD VALIGN=top ALIGN=left>a sub-expression <TT>E</TT> is a floating point number while an
integer is expected</TD>
<TD VALIGN=top ALIGN=center NOWRAP> </TD>
<TD VALIGN=top ALIGN=left><TT>type_error(integer, E)</TT></TD>
</TR>
<TR><TD BGCOLOR=black COLSPAN=3><TABLE BORDER=0 WIDTH="100%" CELLSPACING=0 CELLPADDING=1><TR><TD></TD></TR></TABLE></TD>
</TR>
<TR><TD VALIGN=top ALIGN=left>a sub-expression <TT>E</TT> is an integer while a floating point
number is expected</TD>
<TD VALIGN=top ALIGN=center NOWRAP> </TD>
<TD VALIGN=top ALIGN=left><TT>type_error(float, E)</TT></TD>
</TR>
<TR><TD BGCOLOR=black COLSPAN=3><TABLE BORDER=0 WIDTH="100%" CELLSPACING=0 CELLPADDING=1><TR><TD></TD></TR></TABLE></TD>
</TR>
<TR><TD VALIGN=top ALIGN=left>a division by zero occurs</TD>
<TD VALIGN=top ALIGN=center NOWRAP> </TD>
<TD VALIGN=top ALIGN=left><TT>evaluation_error(zero_divisor)</TT></TD>
</TR>
<TR><TD BGCOLOR=black COLSPAN=3><TABLE BORDER=0 WIDTH="100%" CELLSPACING=0 CELLPADDING=1><TR><TD></TD></TR></TABLE></TD>
</TR></TABLE><BR>
<B>Portability</B><BR>
<BR>
Refer to the above table to determine which evaluable functors are ISO
and which are GNU Prolog extensions. For efficiency reasons, GNU
Prolog does not detect the following ISO arithmetic errors:
<TT>float_overflow</TT>,
<TT>int_overflow, int_underflow</TT>, and <TT>undefined</TT>.<BR>
<BR>
<A NAME="toc61"></A>
<H4 CLASS="subsubsection"><A NAME="htoc89">7.6.2</A> <TT>(is)/2</TT> - evaluate expression</H4>
<B>Templates</B>
<DL CLASS="list" COMPACT="compact"><DT CLASS="dt-list"><DD CLASS="dd-list"><TT>
is(?term, +evaluable)</TT></DL>
<B>Description</B><BR>
<BR>
<TT>Result is Expression</TT> succeeds if <TT>Result</TT> can be
unified with <I>eval</I>(<TT>Expression</TT>). Refer to the
evaluation of an arithmetic expression for the definition of the
<I>eval</I> function
(section <A HREF="#Evaluation-of-an-arithmetic-expression">7.6.1</A>).<BR>
<BR>
<TT>is</TT> is a predefined infix operator (section <A HREF="gprolog037.html#op/3:(Term-input/output)">7.14.10</A>).<BR>
<BR>
<B>Errors</B><BR>
<BR>
Refer to the evaluation of an arithmetic expression for possible errors
(section <A HREF="#Evaluation-of-an-arithmetic-expression">7.6.1</A>).<BR>
<BR>
<B>Portability</B><BR>
<BR>
ISO predicate.<BR>
<BR>
<A NAME="toc62"></A>
<H4 CLASS="subsubsection"><A NAME="htoc90">7.6.3</A> <TT>(=:=)/2</TT> - arithmetic equal,
<TT>(=\=)/2</TT> - arithmetic not equal,<BR>
<TT>(<)/2</TT> - arithmetic less than,
<TT>(=<)/2</TT> - arithmetic less than or equal to,<BR>
<TT>(>)/2</TT> - arithmetic greater than,
<TT>(>=)/2</TT> - arithmetic greater than or equal to</H4>
<A NAME="(=:=)/2"></A>
<B>Templates</B>
<DL CLASS="list" COMPACT="compact"><DT CLASS="dt-list"><DD CLASS="dd-list"><TT>
=:=(+evaluable, +evaluable)<BR>
=\=(+evaluable, +evaluable)<BR>
<(+evaluable, +evaluable)<BR>
=<(+evaluable, +evaluable)<BR>
>(+evaluable, +evaluable)<BR>
>=(+evaluable, +evaluable)</TT></DL>
<B>Description</B><BR>
<BR>
<TT>Expr1 =:= Expr2</TT> succeeds if <I>eval</I>(<TT>Expr1</TT>) =
<I>eval</I>(<TT>Expr2</TT>).<BR>
<BR>
<TT>Expr1 =\= Expr2</TT> succeeds if <I>eval</I>(<TT>Expr1</TT>)
≠ <I>eval</I>(<TT>Expr2</TT>).<BR>
<BR>
<TT>Expr1 < Expr2</TT> succeeds if <I>eval</I>(<TT>Expr1</TT>) <
<I>eval</I>(<TT>Expr2</TT>).<BR>
<BR>
<TT>Expr1 =< Expr2</TT> succeeds if <I>eval</I>(<TT>Expr1</TT>)
≤ <I>eval</I>(<TT>Expr2</TT>).<BR>
<BR>
<TT>Expr1 > Expr2</TT> succeeds if <I>eval</I>(<TT>Expr1</TT>) >
<I>eval</I>(<TT>Expr2</TT>).<BR>
<BR>
<TT>Expr1 >= Expr2</TT> succeeds if <I>eval</I>(<TT>Expr1</TT>)
≥ <I>eval</I>(<TT>Expr2</TT>).<BR>
<BR>
Refer to the evaluation of an arithmetic expression for the definition of
the <I>eval</I> function (section <A HREF="#Evaluation-of-an-arithmetic-expression">7.6.1</A>).<BR>
<BR>
<TT>=:=</TT>, <TT>=\=</TT>, <TT><</TT>, <TT>=<</TT>,
<TT>></TT> and <TT>>=</TT> are predefined infix operators
(section <A HREF="gprolog037.html#op/3:(Term-input/output)">7.14.10</A>).<BR>
<BR>
<B>Errors</B><BR>
<BR>
Refer to the evaluation of an arithmetic expression for possible errors
(section <A HREF="#Evaluation-of-an-arithmetic-expression">7.6.1</A>).<BR>
<BR>
<B>Portability</B><BR>
<BR>
ISO predicates.<BR>
<BR>
<HR SIZE=2>
Copyright (C) 1999-2007 Daniel Diaz
<BR>
<BR>
Verbatim copying and distribution of this entire article is permitted in any
medium, provided this notice is preserved. <BR>
<BR>
<A HREF="index.html#copyright">More about the copyright</A>
<HR>
<A HREF="gprolog028.html"><IMG SRC ="previous_motif.gif" ALT="Previous"></A>
<A HREF="gprolog023.html"><IMG SRC ="contents_motif.gif" ALT="Up"></A>
<A HREF="gprolog030.html"><IMG SRC ="next_motif.gif" ALT="Next"></A>
</BODY>
</HTML>
|