1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*-------------------------------------------------------------------------*/
/* Benchmark (Boolean) */
/* */
/* Name : bsend.pl */
/* Title : crypt-arithmetic */
/* Original Source: Daniel Diaz - INRIA France */
/* Adapted by : Daniel Diaz for GNU Prolog */
/* Date : January 1993 */
/* */
/* Solve the operation: */
/* */
/* S E N D */
/* + M O R E */
/* ----------- */
/* = M O N E Y */
/* */
/* (resolution by column) */
/* The digit of each letter is coded in binary on 4 bits (dcb). The order */
/* for labeling is very relevant for efficiency. */
/* */
/* Solution: */
/* [S,E,N,D,M,O,R,Y] */
/* [[1,0,0,1],[0,1,0,1],[0,1,1,0],[0,1,1,1],[0,0,0,1],[0,0,0,0],[1,0,0,0],*/
/* [0,0,1,0]] */
/* ie: */
/* [9,5,6,7,1,0,8,2] */
/*-------------------------------------------------------------------------*/
q :-
statistics(runtime, _),
( bsend(A),
write(A),
nl %,
% fail
; write('No more solutions'),
nl
),
statistics(runtime, [_, Y]),
write('time : '),
write(Y),
nl.
bsend(A) :-
A = [S, E, N, D, M, O, R, Y],
dcb_digit(S),
dcb_digit(E),
dcb_digit(N),
dcb_digit(D),
dcb_digit(M),
dcb_digit(O),
dcb_digit(R),
dcb_digit(Y),
diff0(S),
diff0(M),
all_dcb_digit_diff(A),
LC = [C1, C2, C3, C4],
Z = [0, 0, 0, 0],
dcb_add(0, D, E, Y, C1),
dcb_add(C1, N, R, E, C2),
dcb_add(C2, E, O, N, C3),
dcb_add(C3, S, M, O, C4),
dcb_add(C4, Z, Z, M, 0), !,
array_labeling(A),
fd_labeling(LC).
dcb_digit(D) :-
D = [B3, B2, B1, _],
B3 #==> #\ B2 #/\ #\ B1.
diff0([B3, B2, B1, B0]) :-
B3 #\/ B2 #\/ B1 #\/ B0.
all_dcb_digit_diff([]).
all_dcb_digit_diff([X|L]) :-
diff_of(L, X),
all_dcb_digit_diff(L).
diff_of([], _).
diff_of([Y|L], X) :-
dcb_digit_diff(X, Y),
diff_of(L, X).
dcb_digit_diff([X3, X2, X1, X0], [Y3, Y2, Y1, Y0]) :-
#\ ((X3 #<=> Y3) #/\ (X2 #<=> Y2) #/\ (X1 #<=> Y1) #/\ (X0 #<=> Y0)).
dcb_add(CI, [X3, X2, X1, X0], [Y3, Y2, Y1, Y0], [Z3, Z2, Z1, Z0], CO) :-
full_add(CI, X0, Y0, Z0, C1),
full_add(C1, X1, Y1, I1, C2),
full_add(C2, X2, Y2, I2, C3),
full_add(C3, X3, Y3, I3, C4),
I2 #\/ I1 #<=> I12,
I3 #/\ I12 #<=> I123,
C4 #\/ I123 #<=> Hex,
half_add(I1, Hex, Z1, D2),
full_add(D2, I2, Hex, Z2, D3),
half_add(D3, I3, Z3, D4),
C4 #\/ D4 #<=> CO.
full_add(CI, X, Y, Z, CO) :-
half_add(X, Y, Z1, C1),
half_add(CI, Z1, Z, C2),
C1 #\/ C2 #<=> CO.
half_add(X, Y, Z, CO) :-
X #/\ Y #<=> CO,
X ## Y #<=> Z.
:- include(array).
% interface with for_each_... procedures
array_prog(_, _).
:- initialization(q).
|