1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
/*-------------------------------------------------------------------------*/
/* Benchmark (Finite Domain) */
/* */
/* Name : langford.pl */
/* Title : Langford's problem */
/* Original Source: Daniel Diaz */
/* Date : February 2003 */
/* */
/* The problem L(K,N) is to arrange K sets of numbers 1 to N, so that each */
/* appearance of the number M is M numbers on from the last. We here solve */
/* L(2,N). The problem admits a solution if N is of the form 4k or 4k-1. */
/* */
/* Solution: */
/* N=4 [2,3,4,2,1,3,1,4] */
/* N=8 [1,5,1,6,4,7,8,5,3,4,6,2,3,7,2,8] */
/* N=11 [5,1,2,1,9,2,5,8,10,11,4,6,7,3,9,4,8,3,6,10,7,11] */
/*-------------------------------------------------------------------------*/
q :-
write('N ?'),
read_integer(N),
statistics(runtime, _),
langford(N, L),
statistics(runtime, [_, Y]),
write(L),
nl,
write('time : '),
write(Y),
nl.
/*
* Find an assignment of [X1, X2, ..., Xn] (Xi is the position of the first occurrence of i).
* For each Xi the constraints are:
*
* Xi != Xj
* Xj != Xi + i + 1
* Xi != Xj + j + 1
* Xi + i + 1 != Xj + j + 1
*/
langford(N, LD) :-
( N mod 4 =:= 0
; N mod 4 =:= 3
), !,
length(L, N),
N2 is N * 2,
fd_set_vector_max(512),
set_cstr(L, L, 1, N2),
fd_all_different(L),
symetric(L, N),
% fd_labeling(L, [variable_method(random), value_method(random)]), % sometimes much better
fd_labeling(L, [variable_method(ff), value_method(max)]),
decode(L, N2, LD).
set_cstr([], _, _, _).
set_cstr([X|U], L, I, N2) :-
Max is N2 - 1 - I,
fd_domain(X, 1, Max),
I1 is I + 1,
set_cstr1(U, I1, X, I1),
set_cstr(U, L, I1, N2).
% TO DO: don't recompute X + I1 and Y + J1 (create several same variables)
set_cstr1([], _, _, _).
set_cstr1([Y|L], J, X, I1) :-
J1 is J + 1,
% X #\= Y, % done by all_different
Y #\= X + I1, % I1 == I + 1, thus we state Y #\= X + I + 1
X #\= Y + J1, % J1 == J + 1, thus we state X #\= Y + J + 1
% Y + J1 #\= X + I1,
( I1 > J1 ->
Diff is I1 - J1,
Y #\= X + Diff
;
Diff is J1 - I1,
Y + Diff #\= X
),
set_cstr1(L, J1, X, I1).
symetric([X|_], N) :-
X #< N.
decode(L, N2, LD) :-
length(LD, N2),
decode1(L, 1, LD).
decode1([], _, _).
decode1([X|L], I, LD) :-
nth(X, LD, I),
Y is X + I + 1,
nth(Y, LD, I),
I1 is I + 1,
decode1(L, I1, LD).
:- initialization(q).
|