File: partit.pl

package info (click to toggle)
gprolog 1.4.5.0-3
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 7,924 kB
  • sloc: ansic: 55,584; perl: 18,501; sh: 3,401; makefile: 1,114; asm: 20
file content (281 lines) | stat: -rw-r--r-- 9,381 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*-------------------------------------------------------------------------*/
/* Benchmark (Finite Domain)                                               */
/*                                                                         */
/* Name           : partit.pl                                              */
/* Title          : integer partitionning                                  */
/* Original Source: Daniel Diaz - INRIA France                             */
/* Adapted by     : Daniel Diaz for GNU Prolog                             */
/* Date           : September 1993 (modified March 1997, feb 2010)         */
/*                                                                         */
/* Partition numbers 1,2,...,N into two groups A and B such that:          */
/*   a) A and B have the same length,                                      */
/*   b) sum of numbers in A = sum of numbers in B,                         */
/*   c) sum of squares of numbers in A = sum of squares of numbers in B.   */
/*                                                                         */
/* It seems there is a solution if N >= 8 and N is a multiple of 4.        */
/*                                                                         */
/* Two redundant constraints are used:                                     */
/*                                                                         */
/*   - in order to avoid duplicate solutions (permutations) we impose      */
/*     A1<A2<....<AN/2, B1<B2<...<BN/2 and A1=1. This achieves much more   */
/*     pruning than only one fd_all_different constraint.                  */
/*                                                                         */
/*   - the half sums are known                                             */
/*                              N                                          */
/*        Sum k^1 = Sum l^1 = (Sum i) / 2 = N*(N+1) / 2 / 2                */
/*       k in A    l in B      i=1                                         */
/*                              N                                          */
/*        Sum k^2 = Sum l^2 = (Sum i^2)/2 = N*(N+1)*(2*N+1) / 6 / 2        */
/*       k in A    l in B      i=1                                         */
/*                                                                         */
/* The labeling heuristics consists in placing the biggest missing value   */
/* (from N to 1). If only one solution is needed, it is better for first   */
/* to put this value in the group which has the smallest sum (of already   */
/* placed values). If all solutions are wanted this is not relevant and    */
/* incurs an little overhead.                                              */
/*                                                                         */
/* Generalization: finding a partition of 1,2...,N into 2 groups A and B:  */
/*                                                                         */
/*     Sum (x^k) = Sum y^k                                                 */
/*   x in A      y in B                                                    */
/*                                                                         */
/* Condition a) is a special case where k=0, b) where k=1 and c) where k=2.*/
/*                                                                         */
/* Solution:                                                               */
/*                                                                         */
/* N=8  A=[1,4,6,7]                                                        */
/*      B=[2,3,5,8]                                                        */
/*                                                                         */
/* N=16 A=[1,4,6,7,10,11,13,16]                                            */
/*      B=[2,3,5,8,9,12,14,15]                                             */
/*                                                                         */
/* N=20 A=[1,3,7,8,9,11,14,15,17,20]                                       */
/*      B=[2,4,5,6,10,12,13,16,18,19]                                      */
/*                                                                         */
/* N=24 A=[1,5,6,7,8,12,13,16,17,20,21,24]                                 */
/*      B=[2,3,4,9,10,11,14,15,18,19,22,23]                                */
/*                                                                         */
/* Computing all solutions                                                 */
/*                                                                         */
/* N=8            1 solutions in      0.00 secs = 0ms                      */
/* N=12           1 solutions in      0.00 secs = 0ms                      */
/* N=16           7 solutions in      0.01 secs = 10ms                     */
/* N=20          24 solutions in      0.01 secs = 10ms                     */
/* N=24         296 solutions in      0.03 secs = 30ms                     */
/* N=28        1443 solutions in      0.35 secs = 350ms                    */
/* N=32       17444 solutions in      3.51 secs = 3s 510ms                 */
/* N=36      138905 solutions in     35.86 secs = 35s 860ms                */
/* N=40     1581207 solutions in    385.07 secs = 6m 25s 70ms              */
/* N=44    14762400 solutions in   4222.02 secs = 1h 10m 22s 20ms          */
/* N=48   176977514 solutions in  48276.96 secs = 13h 24m 36s 960ms        */
/* N=52  1850331835 solutions in 552017.03 secs = 6d 9h 20m 17s 30ms       */
/*-------------------------------------------------------------------------*/


q :-
	write('N ?'),
	read_integer(N),
	statistics(runtime, _),
	partit(N, A, B),
	statistics(runtime, [_, Y]),
	write(sol(A, B)),
	nl,
	write('time : '),
	write(Y),
	nl.




partit(N, A, B) :-
	init_group(N, A),
	init_group(N, B),
	A = [1|_],		% fix 1 as the first value of the group A
	cstr_pow(1, N, A, B),
	cstr_pow(2, N, A, B),
%	cstr_pow(3, N, A, B),	% uncomment to add ^3 constraints
%	cstr_pow(4, N, A, B),	% uncomment to add ^4 constraints
	reverse(A, AR),
	reverse(B, BR),
	enum_one(N, 0, 0, AR, BR).   % better if only one solution is wanted
%	enum_all(N, AR, BR).	% a bit better if all solutions are wanted



compute_and_check_half_sum(_N, _P, S, HS) :-
	S mod 2 =:= 0, !,
	HS is S // 2.

compute_and_check_half_sum(N, P, S, _) :-
	format('failure since sum of power ~d until ~d = ~d is odd (half-sum is not integer)~n', [P, N, S]),
	fail.



init_group(N, L) :-
	compute_and_check_half_sum(N, 0, N, N2),
	length(L, N2),
	fd_domain(L, 1, N),
	ascending_order(L).



ascending_order([X|L]) :-
	ascending_order(L, X).


ascending_order([], _).

ascending_order([Y|L], X) :-
	Y #> X,
	ascending_order(L, Y).



cstr_pow(P, N, A, B) :-
	sum_power(P, N, S),
	compute_and_check_half_sum(N, P, S, HS),
	cstr_pow(A, P, HS),
	cstr_pow(B, P, HS).



cstr_pow([], _, 0).

cstr_pow([X|L], P, S) :-
	X ** P #= XP,
	S #= XP + S1,
	cstr_pow(L, P, S1).




/* Known sums of powers
 * sum of n first integers: s1(n) = n * (n+1) / 2
 * sum of n first squares : s2(n) = n * (n+1) * (2*n+1)/ 6
 * sum of n first cubes   : s3(n) = n^2 * (n+1)^2 / 4 = s1(n)^2
 * sum of n fisrt pow 4   : s4(n) = n * (n+1) * (6*n^3 + 9*n^2 + n - 1 ) / 30
 */


sum_power(1, N, S) :-
	S is N * (N + 1) // 2.

sum_power(2, N, S) :-
	S is  N * (N + 1) * (2 * N + 1) // 6.

sum_power(3, N, S) :-
	sum_power(1, N, S2),
	S is S2 * S2.

sum_power(4, N, S) :-
	S is N * (N+1) * (6*N^3 + 9*N^2 + N - 1) // 30.



/* The labeling heuristics consists in placing the biggest missing value (from N to 1) */


enum_all(1, _, _) :-
	!.

enum_all(N, [N|A], B) :-
	N1 is N - 1,
	enum_all(N1, A, B).

enum_all(N, A, [N|B]) :-
	N1 is N - 1,
	enum_all(N1, A, B).

/* If only one solution is wanted, it is better to first try to put the biggest missing value
 * in the group which has the smallest sum (of already placed values). */

enum_one(1, _, _, _, _) :-
	!.

enum_one(N, SumA, SumB, A, B) :-
	SumA > SumB, !,
	enum_one(N, SumB, SumA, B, A).

enum_one(N, SumA, SumB, [N|A], B) :- 		% in A first (which has the smallest sum) then...
	SumA1 is SumA + N,
	N1 is N - 1,
	enum_one(N1, SumA1, SumB, A, B).

enum_one(N, SumA, SumB, A, [N|B]) :- 		% in B at backtracking
	SumB1 is SumB + N,
	N1 is N - 1,
	enum_one(N1, SumA, SumB1, A, B).


:-	initialization(q).




%%% to compute the number of solutions


all(N) :-
	g_assign(nb,0),
	user_time(T0),
	all(N, T0).


all(N, T0) :-
	partit(N, _, _),
	g_inc(nb, NB),
	NB mod 100000 =:= 0,	% adapt this to have more or less displayed lines
	show_time(NB, T0),
	fail.


all(N, T0) :-
	g_read(nb, NB),
	format('\nfinal for partit ~d:\n\n', [N]),
	show_time(NB, T0).



show_time(NB, T0) :-
	user_time(T1),
	T is (T1 - T0),
	format('%10d solutions in ', [NB]),
	disp_time(T),
	TA is T / NB,
	write('\n           average      '),
	disp_time(TA),
	write(' / sol\n').


disp_time(T) :-
	T1 is T / 1000,
	format('%20.6f secs =', [T1]),
	disp_time([86400000-d,3600000-h,60000-m,1000-s,1-ms],
		  T, nothing_yet_displayed).




disp_time([], T, nothing_yet_displayed) :-
	!,
	format(' %.3f ms', [T]).

disp_time([], _, _).


disp_time([M-_|LM], T, nothing_yet_displayed) :-
	T < M, !,
	disp_time(LM, T, nothing_yet_displayed).

disp_time([M-U|LM], T, _) :-
	N is truncate(T / M),
	T1 is T - (N * M),
	format(' ~d~a', [N, U]),
	disp_time(LM, T1, something_is_displayed).