1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*-------------------------------------------------------------------------*/
/* Benchmark (Finite Domain) */
/* */
/* Name : partit.pl */
/* Title : integer partitionning */
/* Original Source: Daniel Diaz - INRIA France */
/* Adapted by : Daniel Diaz for GNU Prolog */
/* Date : September 1993 (modified March 1997, feb 2010) */
/* */
/* Partition numbers 1,2,...,N into two groups A and B such that: */
/* a) A and B have the same length, */
/* b) sum of numbers in A = sum of numbers in B, */
/* c) sum of squares of numbers in A = sum of squares of numbers in B. */
/* */
/* It seems there is a solution if N >= 8 and N is a multiple of 4. */
/* */
/* Two redundant constraints are used: */
/* */
/* - in order to avoid duplicate solutions (permutations) we impose */
/* A1<A2<....<AN/2, B1<B2<...<BN/2 and A1=1. This achieves much more */
/* pruning than only one fd_all_different constraint. */
/* */
/* - the half sums are known */
/* N */
/* Sum k^1 = Sum l^1 = (Sum i) / 2 = N*(N+1) / 2 / 2 */
/* k in A l in B i=1 */
/* N */
/* Sum k^2 = Sum l^2 = (Sum i^2)/2 = N*(N+1)*(2*N+1) / 6 / 2 */
/* k in A l in B i=1 */
/* */
/* The labeling heuristics consists in placing the biggest missing value */
/* (from N to 1). If only one solution is needed, it is better for first */
/* to put this value in the group which has the smallest sum (of already */
/* placed values). If all solutions are wanted this is not relevant and */
/* incurs an little overhead. */
/* */
/* Generalization: finding a partition of 1,2...,N into 2 groups A and B: */
/* */
/* Sum (x^k) = Sum y^k */
/* x in A y in B */
/* */
/* Condition a) is a special case where k=0, b) where k=1 and c) where k=2.*/
/* */
/* Solution: */
/* */
/* N=8 A=[1,4,6,7] */
/* B=[2,3,5,8] */
/* */
/* N=16 A=[1,4,6,7,10,11,13,16] */
/* B=[2,3,5,8,9,12,14,15] */
/* */
/* N=20 A=[1,3,7,8,9,11,14,15,17,20] */
/* B=[2,4,5,6,10,12,13,16,18,19] */
/* */
/* N=24 A=[1,5,6,7,8,12,13,16,17,20,21,24] */
/* B=[2,3,4,9,10,11,14,15,18,19,22,23] */
/* */
/* Computing all solutions */
/* */
/* N=8 1 solutions in 0.00 secs = 0ms */
/* N=12 1 solutions in 0.00 secs = 0ms */
/* N=16 7 solutions in 0.01 secs = 10ms */
/* N=20 24 solutions in 0.01 secs = 10ms */
/* N=24 296 solutions in 0.03 secs = 30ms */
/* N=28 1443 solutions in 0.35 secs = 350ms */
/* N=32 17444 solutions in 3.51 secs = 3s 510ms */
/* N=36 138905 solutions in 35.86 secs = 35s 860ms */
/* N=40 1581207 solutions in 385.07 secs = 6m 25s 70ms */
/* N=44 14762400 solutions in 4222.02 secs = 1h 10m 22s 20ms */
/* N=48 176977514 solutions in 48276.96 secs = 13h 24m 36s 960ms */
/* N=52 1850331835 solutions in 552017.03 secs = 6d 9h 20m 17s 30ms */
/*-------------------------------------------------------------------------*/
q :-
write('N ?'),
read_integer(N),
statistics(runtime, _),
partit(N, A, B),
statistics(runtime, [_, Y]),
write(sol(A, B)),
nl,
write('time : '),
write(Y),
nl.
partit(N, A, B) :-
init_group(N, A),
init_group(N, B),
A = [1|_], % fix 1 as the first value of the group A
cstr_pow(1, N, A, B),
cstr_pow(2, N, A, B),
% cstr_pow(3, N, A, B), % uncomment to add ^3 constraints
% cstr_pow(4, N, A, B), % uncomment to add ^4 constraints
reverse(A, AR),
reverse(B, BR),
enum_one(N, 0, 0, AR, BR). % better if only one solution is wanted
% enum_all(N, AR, BR). % a bit better if all solutions are wanted
compute_and_check_half_sum(_N, _P, S, HS) :-
S mod 2 =:= 0, !,
HS is S // 2.
compute_and_check_half_sum(N, P, S, _) :-
format('failure since sum of power ~d until ~d = ~d is odd (half-sum is not integer)~n', [P, N, S]),
fail.
init_group(N, L) :-
compute_and_check_half_sum(N, 0, N, N2),
length(L, N2),
fd_domain(L, 1, N),
ascending_order(L).
ascending_order([X|L]) :-
ascending_order(L, X).
ascending_order([], _).
ascending_order([Y|L], X) :-
Y #> X,
ascending_order(L, Y).
cstr_pow(P, N, A, B) :-
sum_power(P, N, S),
compute_and_check_half_sum(N, P, S, HS),
cstr_pow(A, P, HS),
cstr_pow(B, P, HS).
cstr_pow([], _, 0).
cstr_pow([X|L], P, S) :-
X ** P #= XP,
S #= XP + S1,
cstr_pow(L, P, S1).
/* Known sums of powers
* sum of n first integers: s1(n) = n * (n+1) / 2
* sum of n first squares : s2(n) = n * (n+1) * (2*n+1)/ 6
* sum of n first cubes : s3(n) = n^2 * (n+1)^2 / 4 = s1(n)^2
* sum of n fisrt pow 4 : s4(n) = n * (n+1) * (6*n^3 + 9*n^2 + n - 1 ) / 30
*/
sum_power(1, N, S) :-
S is N * (N + 1) // 2.
sum_power(2, N, S) :-
S is N * (N + 1) * (2 * N + 1) // 6.
sum_power(3, N, S) :-
sum_power(1, N, S2),
S is S2 * S2.
sum_power(4, N, S) :-
S is N * (N+1) * (6*N^3 + 9*N^2 + N - 1) // 30.
/* The labeling heuristics consists in placing the biggest missing value (from N to 1) */
enum_all(1, _, _) :-
!.
enum_all(N, [N|A], B) :-
N1 is N - 1,
enum_all(N1, A, B).
enum_all(N, A, [N|B]) :-
N1 is N - 1,
enum_all(N1, A, B).
/* If only one solution is wanted, it is better to first try to put the biggest missing value
* in the group which has the smallest sum (of already placed values). */
enum_one(1, _, _, _, _) :-
!.
enum_one(N, SumA, SumB, A, B) :-
SumA > SumB, !,
enum_one(N, SumB, SumA, B, A).
enum_one(N, SumA, SumB, [N|A], B) :- % in A first (which has the smallest sum) then...
SumA1 is SumA + N,
N1 is N - 1,
enum_one(N1, SumA1, SumB, A, B).
enum_one(N, SumA, SumB, A, [N|B]) :- % in B at backtracking
SumB1 is SumB + N,
N1 is N - 1,
enum_one(N1, SumA, SumB1, A, B).
:- initialization(q).
%%% to compute the number of solutions
all(N) :-
g_assign(nb,0),
user_time(T0),
all(N, T0).
all(N, T0) :-
partit(N, _, _),
g_inc(nb, NB),
NB mod 100000 =:= 0, % adapt this to have more or less displayed lines
show_time(NB, T0),
fail.
all(N, T0) :-
g_read(nb, NB),
format('\nfinal for partit ~d:\n\n', [N]),
show_time(NB, T0).
show_time(NB, T0) :-
user_time(T1),
T is (T1 - T0),
format('%10d solutions in ', [NB]),
disp_time(T),
TA is T / NB,
write('\n average '),
disp_time(TA),
write(' / sol\n').
disp_time(T) :-
T1 is T / 1000,
format('%20.6f secs =', [T1]),
disp_time([86400000-d,3600000-h,60000-m,1000-s,1-ms],
T, nothing_yet_displayed).
disp_time([], T, nothing_yet_displayed) :-
!,
format(' %.3f ms', [T]).
disp_time([], _, _).
disp_time([M-_|LM], T, nothing_yet_displayed) :-
T < M, !,
disp_time(LM, T, nothing_yet_displayed).
disp_time([M-U|LM], T, _) :-
N is truncate(T / M),
T1 is T - (N * M),
format(' ~d~a', [N, U]),
disp_time(LM, T1, something_is_displayed).
|