1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/* gpsutils.c -- code shared between low-level and high-level interfaces */
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdarg.h>
#include <time.h>
#include "gpsd.h"
#define MONTHSPERYEAR 12 /* months per calendar year */
void gps_clear_fix(/*@ out @*/struct gps_fix_t *fixp)
/* stuff a fix structure with recognizable out-of-band values */
{
fixp->time = NAN;
fixp->mode = MODE_NOT_SEEN;
fixp->track = NAN;
fixp->speed = NAN;
fixp->climb = NAN;
fixp->altitude = NAN;
fixp->ept = NAN;
fixp->eph = NAN;
fixp->epv = NAN;
fixp->epd = NAN;
fixp->eps = NAN;
fixp->epc = NAN;
}
void gps_merge_fix(/*@ out @*/struct gps_fix_t *to,
gps_mask_t transfer,
/*@ in @*/struct gps_fix_t *from)
/* merge new data into an old fix */
{
if ((transfer & TIME_SET)!=0)
to->time = from->time;
if ((transfer & LATLON_SET)!=0) {
to->latitude = from->latitude;
to->longitude = from->longitude;
}
if ((transfer & MODE_SET)!=0)
to->mode = from->mode;
if ((transfer & ALTITUDE_SET)!=0)
to->altitude = from->altitude;
if ((transfer & TRACK_SET)!=0)
to->track = from->track;
if ((transfer & SPEED_SET)!=0)
to->speed = from->speed;
if ((transfer & CLIMB_SET)!=0)
to->climb = from->climb;
if ((transfer & TIMERR_SET)!=0)
to->ept = from->ept;
if ((transfer & HERR_SET)!=0)
to->eph = from->eph;
if ((transfer & VERR_SET)!=0)
to->epv = from->epv;
if ((transfer & SPEEDERR_SET)!=0)
to->eps = from->eps;
if ((transfer & CLIMBERR_SET)!=0)
to->epc = from->epc;
}
double timestamp(void)
{
struct timeval tv;
(void)gettimeofday(&tv, NULL);
/*@i1@*/return(tv.tv_sec + tv.tv_usec*1e-6);
}
time_t mkgmtime(register struct tm *t)
/* struct tm to seconds since Unix epoch */
{
register int year;
register time_t result;
static const int cumdays[MONTHSPERYEAR] =
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334};
/*@ +matchanyintegral @*/
year = 1900 + t->tm_year + t->tm_mon / MONTHSPERYEAR;
result = (year - 1970) * 365 + cumdays[t->tm_mon % MONTHSPERYEAR];
result += (year - 1968) / 4;
result -= (year - 1900) / 100;
result += (year - 1600) / 400;
result += t->tm_mday - 1;
result *= 24;
result += t->tm_hour;
result *= 60;
result += t->tm_min;
result *= 60;
result += t->tm_sec;
/*@ -matchanyintegral @*/
return (result);
}
double iso8601_to_unix(/*@in@*/char *isotime)
/* ISO8601 UTC to Unix UTC */
{
char *dp = NULL;
double usec;
struct tm tm;
/*@i1@*/dp = strptime(isotime, "%Y-%m-%dT%H:%M:%S", &tm);
if (*dp == '.')
usec = strtod(dp, NULL);
else
usec = 0;
return (double)mkgmtime(&tm) + usec;
}
/*@observer@*/char *unix_to_iso8601(double fixtime, /*@ out @*/char isotime[], int len)
/* Unix UTC time to ISO8601, no timezone adjustment */
{
struct tm when;
double integral, fractional;
time_t intfixtime;
size_t slen;
fractional = modf(fixtime, &integral);
intfixtime = (time_t)integral;
(void)gmtime_r(&intfixtime, &when);
(void)strftime(isotime, 28, "%Y-%m-%dT%H:%M:%S", &when);
slen = strlen(isotime);
(void)snprintf(isotime + slen, (size_t)len, "%.1f", fractional);
/*@ -aliasunique @*/
(void)memcpy(isotime+slen, isotime+slen+1, strlen(isotime+slen+1));
/*@ -aliasunique @*/
(void)strcat(isotime, "Z");
return isotime;
}
/*
* The 'week' part of GPS dates are specified in weeks since 0000 on 06
* January 1980, with a rollover at 1024. At time of writing the last
* rollover happened at 0000 22 August 1999. Time-of-week is in seconds.
*
* This code copes with both conventional GPS weeks and the "extended"
* 15-or-16-bit version with no wraparound that appears in Zodiac
* chips and is supposed to appear in the Geodetic Navigation
* Information (0x29) packet of SiRF chips. Some SiRF firmware versions
* (notably 231) actually ship the wrapped 10-bit week, despite what
* the protocol reference claims.
*
* Note: This time will need to be corrected for leap seconds.
*/
#define GPS_EPOCH 315964800 /* GPS epoch in Unix time */
#define SECS_PER_WEEK (60*60*24*7) /* seconds per week */
#define GPS_ROLLOVER (1024*SECS_PER_WEEK) /* rollover period */
double gpstime_to_unix(int week, double tow)
{
double fixtime;
if (week >= 1024)
fixtime = GPS_EPOCH + (week * SECS_PER_WEEK) + tow;
else {
time_t now, last_rollover;
(void)time(&now);
last_rollover = GPS_EPOCH+((now-GPS_EPOCH)/GPS_ROLLOVER)*GPS_ROLLOVER;
/*@i@*/fixtime = last_rollover + (week * SECS_PER_WEEK) + tow;
}
return fixtime;
}
void unix_to_gpstime(double unixtime, /*@out@*/int *week, /*@out@*/double *tow)
{
unixtime -= GPS_EPOCH;
*week = (int)(unixtime / SECS_PER_WEEK);
*tow = fmod(unixtime, SECS_PER_WEEK);
}
#define Deg2Rad(n) ((n) * DEG_2_RAD)
static double CalcRad(double lat)
/* earth's radius of curvature in meters at specified latitude.*/
{
const double a = 6378.137;
const double e2 = 0.081082 * 0.081082;
// the radius of curvature of an ellipsoidal Earth in the plane of a
// meridian of latitude is given by
//
// R' = a * (1 - e^2) / (1 - e^2 * (sin(lat))^2)^(3/2)
//
// where a is the equatorial radius,
// b is the polar radius, and
// e is the eccentricity of the ellipsoid = sqrt(1 - b^2/a^2)
//
// a = 6378 km (3963 mi) Equatorial radius (surface to center distance)
// b = 6356.752 km (3950 mi) Polar radius (surface to center distance)
// e = 0.081082 Eccentricity
double sc = sin(Deg2Rad(lat));
double x = a * (1.0 - e2);
double z = 1.0 - e2 * sc * sc;
double y = pow(z, 1.5);
double r = x / y;
return r * 1000.0; // Convert to meters
}
double earth_distance(double lat1, double lon1, double lat2, double lon2)
/* distance in meters between two points specified in degrees. */
{
double x1 = CalcRad(lat1) * cos(Deg2Rad(lon1)) * sin(Deg2Rad(90-lat1));
double x2 = CalcRad(lat2) * cos(Deg2Rad(lon2)) * sin(Deg2Rad(90-lat2));
double y1 = CalcRad(lat1) * sin(Deg2Rad(lon1)) * sin(Deg2Rad(90-lat1));
double y2 = CalcRad(lat2) * sin(Deg2Rad(lon2)) * sin(Deg2Rad(90-lat2));
double z1 = CalcRad(lat1) * cos(Deg2Rad(90-lat1));
double z2 = CalcRad(lat2) * cos(Deg2Rad(90-lat2));
double a = (x1*x2 + y1*y2 + z1*z2)/pow(CalcRad((lat1+lat2)/2),2);
// a should be in [1, -1] but can sometimes fall outside it by
// a very small amount due to rounding errors in the preceding
// calculations (this is prone to happen when the argument points
// are very close together). Thus we constrain it here.
if (fabs(a) > 1)
a = 1;
else if (a < -1)
a = -1;
return CalcRad((lat1+lat2) / 2) * acos(a);
}
/*****************************************************************************
Carl Carter of SiRF supplied this algorithm for computing DOPs from
a list of visible satellites...
For satellite n, let az(n) = azimuth angle from North and el(n) be elevation.
Let:
a(k, 1) = sin az(k) * cos el(k)
a(k, 2) = cos az(k) * cos el(k)
a(k, 3) = sin el(k)
Then form the line-of-sight matrix A for satellites used in the solution:
| a(1,1) a(1,2) a(1,3) 1 |
| a(2,1) a(2,2) a(2,3) 1 |
| : : : : |
| a(n,1) a(n,2) a(n,3) 1 |
And its transpose A~:
|a(1, 1) a(2, 1) . . . a(n, 1) |
|a(1, 2) a(2, 2) . . . a(n, 2) |
|a(1, 3) a(2, 3) . . . a(n, 3) |
| 1 1 . . . 1 |
Compute the covariance matrix (A~*A)^-1, which is guaranteed symmetric:
| s(x)^2 s(x)*s(y) s(x)*s(z) s(x)*s(t) |
| s(x)*s(y) s(y)^2 s(y)*s(z) s(y)*s(t) |
| s(z)*s(t) s(y)*s(z) s(z)^2 s(z)*s(t) |
| s(x)*s(t) s(y)*s(t) s(z)*s(t) s(z)^2 |
Then:
GDOP = sqrt(s(x)^2 + s(y)^2 + s(z)^2 + s(t)^2)
TDOP = sqrt(s(t)^2)
PDOP = sqrt(s(x)^2 + s(y)^2 + s(z)^2)
HDOP = sqrt(s(x)^2 + s(y)^2)
VDOP = sqrt(s(y)^2)
Here's how we implement it...
First, each compute element P(i,j) of the 4x4 product A~*A.
If S(k=1,k=n): f(...) is the sum of f(...) as k varies from 1 to n, then
applying the definition of matrix product tells us:
P(i,j) = S(k=1,k=n): B(i, k) * A(k, j)
But because B is the transpose of A, this reduces to
P(i,j) = S(k=1,k=n): A(k, i) * A(k, j)
This is not, however, the entire algorithm that SiRF uses. Carl writes:
> As you note, with rounding accounted for, most values agree exactly, and
> those that don't agree our number is higher. That is because we
> deweight some satellites and account for that in the DOP calculation.
> If a satellite is not used in a solution at the same weight as others,
> it should not contribute to DOP calculation at the same weight. So our
> internal algorithm does a compensation for that which you would have no
> way to duplicate on the outside since we don't output the weighting
> factors. In fact those are not even available to API users.
Queried about the deweighting, Carl says:
> In the SiRF tracking engine, each satellite track is assigned a quality
> value based on the tracker's estimate of that signal. It includes C/No
> estimate, ability to hold onto the phase, stability of the I vs. Q phase
> angle, etc. The navigation algorithm then ranks all the tracks into
> quality order and selects which ones to use in the solution and what
> weight to give those used in the solution. The process is actually a
> bit of a "trial and error" method -- we initially use all available
> tracks in the solution, then we sequentially remove the lowest quality
> ones until the solution stabilizes. The weighting is inherent in the
> Kalman filter algorithm. Once the solution is stable, the DOP is
> computed from those SVs used, and there is an algorithm that looks at
> the quality ratings and determines if we need to deweight any.
> Likewise, if we use altitude hold mode for a 3-SV solution, we deweight
> the phantom satellite at the center of the Earth.
So we cannot exactly duplicate what SiRF does internally. We'll leave
HDOP alone and use our computed values for VDOP and PDOP. Note, this
may have to change in the future if this code is used by a non-SiRF
driver.
******************************************************************************/
/*@ -fixedformalarray -mustdefine @*/
static int invert(double mat[4][4], /*@out@*/double inverse[4][4])
{
// Find all NECESSARY 2x2 subdeterminants
double Det2_12_01 = mat[1][0]*mat[2][1] - mat[1][1]*mat[2][0];
double Det2_12_02 = mat[1][0]*mat[2][2] - mat[1][2]*mat[2][0];
//double Det2_12_03 = mat[1][0]*mat[2][3] - mat[1][3]*mat[2][0];
double Det2_12_12 = mat[1][1]*mat[2][2] - mat[1][2]*mat[2][1];
//double Det2_12_13 = mat[1][1]*mat[2][3] - mat[1][3]*mat[2][1];
//double Det2_12_23 = mat[1][2]*mat[2][3] - mat[1][3]*mat[2][2];
double Det2_13_01 = mat[1][0]*mat[3][1] - mat[1][1]*mat[3][0];
//double Det2_13_02 = mat[1][0]*mat[3][2] - mat[1][2]*mat[3][0];
double Det2_13_03 = mat[1][0]*mat[3][3] - mat[1][3]*mat[3][0];
//double Det2_13_12 = mat[1][1]*mat[3][2] - mat[1][2]*mat[3][1];
double Det2_13_13 = mat[1][1]*mat[3][3] - mat[1][3]*mat[3][1];
//double Det2_13_23 = mat[1][2]*mat[3][3] - mat[1][3]*mat[3][2];
double Det2_23_01 = mat[2][0]*mat[3][1] - mat[2][1]*mat[3][0];
double Det2_23_02 = mat[2][0]*mat[3][2] - mat[2][2]*mat[3][0];
double Det2_23_03 = mat[2][0]*mat[3][3] - mat[2][3]*mat[3][0];
double Det2_23_12 = mat[2][1]*mat[3][2] - mat[2][2]*mat[3][1];
double Det2_23_13 = mat[2][1]*mat[3][3] - mat[2][3]*mat[3][1];
double Det2_23_23 = mat[2][2]*mat[3][3] - mat[2][3]*mat[3][2];
// Find all NECESSARY 3x3 subdeterminants
double Det3_012_012 = mat[0][0]*Det2_12_12 - mat[0][1]*Det2_12_02
+ mat[0][2]*Det2_12_01;
//double Det3_012_013 = mat[0][0]*Det2_12_13 - mat[0][1]*Det2_12_03
// + mat[0][3]*Det2_12_01;
//double Det3_012_023 = mat[0][0]*Det2_12_23 - mat[0][2]*Det2_12_03
// + mat[0][3]*Det2_12_02;
//double Det3_012_123 = mat[0][1]*Det2_12_23 - mat[0][2]*Det2_12_13
// + mat[0][3]*Det2_12_12;
//double Det3_013_012 = mat[0][0]*Det2_13_12 - mat[0][1]*Det2_13_02
// + mat[0][2]*Det2_13_01;
double Det3_013_013 = mat[0][0]*Det2_13_13 - mat[0][1]*Det2_13_03
+ mat[0][3]*Det2_13_01;
//double Det3_013_023 = mat[0][0]*Det2_13_23 - mat[0][2]*Det2_13_03
// + mat[0][3]*Det2_13_02;
//double Det3_013_123 = mat[0][1]*Det2_13_23 - mat[0][2]*Det2_13_13
// + mat[0][3]*Det2_13_12;
//double Det3_023_012 = mat[0][0]*Det2_23_12 - mat[0][1]*Det2_23_02
// + mat[0][2]*Det2_23_01;
//double Det3_023_013 = mat[0][0]*Det2_23_13 - mat[0][1]*Det2_23_03
// + mat[0][3]*Det2_23_01;
double Det3_023_023 = mat[0][0]*Det2_23_23 - mat[0][2]*Det2_23_03
+ mat[0][3]*Det2_23_02;
//double Det3_023_123 = mat[0][1]*Det2_23_23 - mat[0][2]*Det2_23_13
// + mat[0][3]*Det2_23_12;
double Det3_123_012 = mat[1][0]*Det2_23_12 - mat[1][1]*Det2_23_02
+ mat[1][2]*Det2_23_01;
double Det3_123_013 = mat[1][0]*Det2_23_13 - mat[1][1]*Det2_23_03
+ mat[1][3]*Det2_23_01;
double Det3_123_023 = mat[1][0]*Det2_23_23 - mat[1][2]*Det2_23_03
+ mat[1][3]*Det2_23_02;
double Det3_123_123 = mat[1][1]*Det2_23_23 - mat[1][2]*Det2_23_13
+ mat[1][3]*Det2_23_12;
// Find the 4x4 determinant
static double det;
det = mat[0][0]*Det3_123_123
- mat[0][1]*Det3_123_023
+ mat[0][2]*Det3_123_013
- mat[0][3]*Det3_123_012;
// ??? Should the test be made: fabs(det) <= epsilon ???
if (det == 0.0)
return 0;
inverse[0][0] = Det3_123_123 / det;
//inverse[0][1] = -Det3_023_123 / det;
//inverse[0][2] = Det3_013_123 / det;
//inverse[0][3] = -Det3_012_123 / det;
//inverse[1][0] = -Det3_123_023 / det;
inverse[1][1] = Det3_023_023 / det;
//inverse[1][2] = -Det3_013_023 / det;
//inverse[1][3] = Det3_012_023 / det;
//inverse[2][0] = Det3_123_013 / det;
//inverse[2][1] = -Det3_023_013 / det;
inverse[2][2] = Det3_013_013 / det;
//inverse[2][3] = -Det3_012_013 / det;
//inverse[3][0] = -Det3_123_012 / det;
//inverse[3][1] = Det3_023_012 / det;
//inverse[3][2] = -Det3_013_012 / det;
inverse[3][3] = Det3_012_012 / det;
return 1;
}
/*@ +fixedformalarray +mustdefine @*/
gps_mask_t dop(struct gps_data_t *gpsdata)
{
double prod[4][4];
double inv[4][4];
double satpos[MAXCHANNELS][4];
int i, j, k, n;
#ifdef __UNUSED__
gpsd_report(0, "Satellite picture:\n");
for (k = 0; k < gpsdata->device_type.channels; k++) {
if (gpsdata->used[k])
gpsd_report(0, "az: %d el: %d SV: %d\n",
gpsdata->azimuth[k], gpsdata->elevation[k], gpsdata->used[k]);
}
#endif /* __UNUSED__ */
for (n = k = 0; k < gpsdata->satellites_used; k++) {
if (gpsdata->used[k] != 0)
continue;
satpos[n][0] = sin(gpsdata->azimuth[k]*DEG_2_RAD)
* cos(gpsdata->elevation[k]*DEG_2_RAD);
satpos[n][1] = cos(gpsdata->azimuth[k]*DEG_2_RAD)
* cos(gpsdata->elevation[k]*DEG_2_RAD);
satpos[n][2] = sin(gpsdata->elevation[k]*DEG_2_RAD);
satpos[n][3] = 1;
n++;
}
#ifdef __UNUSED__
gpsd_report(0, "Line-of-sight matrix:\n");
for (k = 0; k < n; k++) {
gpsd_report(0, "%f %f %f %f\n",
satpos[k][0], satpos[k][1], satpos[k][2], satpos[k][3]);
}
#endif /* __UNUSED__ */
for (i = 0; i < 4; ++i) { //< rows
for (j = 0; j < 4; ++j) { //< cols
prod[i][j] = 0.0;
for (k = 0; k < n; ++k) {
prod[i][j] += satpos[k][i] * satpos[k][j];
}
}
}
#ifdef __UNUSED__
gpsd_report(0, "product:\n");
for (k = 0; k < 4; k++) {
gpsd_report(0, "%f %f %f %f\n",
prod[k][0], prod[k][1], prod[k][2], prod[k][3]);
}
#endif /* __UNUSED__ */
if (invert(prod, inv)) {
#ifdef __UNUSED__
gpsd_report(0, "inverse:\n");
for (k = 0; k < 4; k++) {
gpsd_report(0, "%f %f %f %f\n",
inv[k][0], inv[k][1], inv[k][2], inv[k][3]);
}
gpsd_report(1, "HDOP: reported = %f, computed = %f\n",
gpsdata->hdop, sqrt(inv[0][0] + inv[1][1]));
#endif /* __UNUSED__ */
} else {
gpsd_report(1, "LOS matrix is singular, can't calculate DOPs.\n");
return 0;
}
/*@ -usedef @*/
//gpsdata->hdop = sqrt(inv[0][0] + inv[1][1]);
gpsdata->vdop = sqrt(inv[1][1]);
gpsdata->pdop = sqrt(inv[0][0] + inv[1][1] + inv[2][2]);
gpsdata->tdop = sqrt(inv[3][3]);
gpsdata->gdop = sqrt(inv[0][0] + inv[1][1] + inv[2][2] + inv[3][3]);
/*@ +usedef @*/
return VDOP_SET | PDOP_SET | TDOP_SET | GDOP_SET;
}
|