1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/*
* This is the SiRF-dependent part of the gpsflash program.
*
* If we ever compose our own S-records, dlgsp2.bin looks for this header
* unsigned char hdr[] = "S00600004844521B\r\n";
*
* Here's what Carl Carter at SiRF told us when he sent us informattion
* on how to build one of these:
*
* --------------------------------------------------------------------------
* Regarding programming the flash, I will attach 2 things for you -- a
* program called SiRFProg, the source for an older flash programming
* utility, and a description of the ROM operation. Note that while the
* ROM description document is for SiRFstarIII, the interface applies to
* SiRFstarII systems like you are using. Here is a little guide to how
* things work:
*
* 1. The receiver is put into "internal boot" mode -- this means that it
* is running off the code contained in the internal ROM rather than the
* external flash. You do this by either putting a pull-up resistor on
* data line 0 and cycling power or by giving a message ID 148.
* 2. The internal ROM provides a very primitive boot loader that permits
* you to load a program into RAM and then switch to it.
* 3. The program in RAM is used to handle the erasing and programming
* chores, so theoretically you could create any program of your own
* choosing to handle things. SiRFProg gives you an example of how to do
* it using Motorola S record files as the programming source. The program
* that resides on the programming host handles sending down the RAM
* program, then communicating with it to transfer the data to program.
* 4. Once the programming is complete, you transfer to it by switching to
* "external boot" mode -- generally this requires a pull-down resistor on
* data line 0 and either a power cycle or toggling the reset line low then
* back high. There is no command that does this.
*
* Our standard utility operates much faster than SiRFProg by using a
* couple tricks. One, it transfers a binary image rather than S records
* (which are ASCII and about 3x the size of the image). Two, it
* compresses the binary image using some standard compression algorithm.
* Three, when transferring the file we boost the port baud rate. Normally
* we use 115200 baud as that is all the drivers in most receivers handle.
* But when supported, we can boost up to 900 kbaud. Programming at 38400
* takes a couple minutes. At 115200 it takes usually under 30 seconds.
* At 900 k it takes about 6 seconds.
* --------------------------------------------------------------------------
*
* Copyright (c) 2005 Chris Kuethe <chris.kuethe@gmail.com>
*/
#include "gpsd.h"
#include "gpsflash.h"
#if defined(SIRFII_ENABLE) && defined(BINARY_ENABLE)
/* From the SiRF protocol manual... may as well be consistent */
#define PROTO_SIRF 0
#define PROTO_NMEA 1
#define BOOST_38400 0
#define BOOST_57600 1
#define BOOST_115200 2
static int
sirfSendUpdateCmd(int pfd){
bool status;
/*@ +charint @*/
static unsigned char msg[] = {
0xa0,0xa2, /* header */
0x00,0x01, /* message length */
0x94, /* 0x94: firmware update */
0x00,0x00, /* checksum */
0xb0,0xb3}; /* trailer */
/*@ -charint @*/
status = sirf_write(pfd, msg);
/* wait a moment for the receiver to switch to boot rom */
(void)sleep(2);
return status ? 0 : -1;
}
static int
sirfSendLoader(int pfd, struct termios *term, char *loader, size_t ls){
unsigned int x;
int r, speed = 38400;
/*@i@*/unsigned char boost[] = {'S', BOOST_38400};
unsigned char *msg;
if((msg = malloc(ls+10)) == NULL){
return -1; /* oops. bail out */
}
/*@ +charint @*/
#ifdef B115200
speed = 115200;
boost[1] = BOOST_115200;
#else
#ifdef B57600
speed = 57600;
boost[1] = BOOST_57600;
#endif
#endif
/*@ -charint @*/
x = (unsigned)htonl(ls);
msg[0] = 'S';
msg[1] = (unsigned char)0;
memcpy(msg+2, &x, 4); /* length */
memcpy(msg+6, loader, ls); /* loader */
memset(msg+6+ls, 0, 4); /* reset vector */
/* send the command to jack up the speed */
if((r = (int)write(pfd, boost, 2)) != 2) {
free(msg);
return -1; /* oops. bail out */
}
/* wait for the serial speed change to take effect */
(void)tcdrain(pfd);
(void)usleep(1000);
/* now set up the serial port at this higher speed */
(void)serialSpeed(pfd, term, speed);
/* ship the actual data */
r = binary_send(pfd, (char *)msg, ls+10);
free(msg);
return r;
}
static int
sirfSetProto(int pfd, struct termios *term, unsigned int speed, unsigned int proto){
int i;
int spd[8] = {115200, 57600, 38400, 28800, 19200, 14400, 9600, 4800};
/*@ +charint @*/
static unsigned char sirf[] = {
0xa0,0xa2, /* header */
0x00,0x31, /* message length */
0xa5, /* message 0xa5: UART config */
0x00,0,0, 0,0,0,0, 8,1,0, 0,0, /* port 0 */
0xff,0,0, 0,0,0,0, 0,0,0, 0,0, /* port 1 */
0xff,0,0, 0,0,0,0, 0,0,0, 0,0, /* port 2 */
0xff,0,0, 0,0,0,0, 0,0,0, 0,0, /* port 3 */
0x00,0x00, /* checksum */
0xb0,0xb3}; /* trailer */
/*@ -charint @*/
if (serialConfig(pfd, term, 38400) == -1)
return -1;
sirf[7] = sirf[6] = (unsigned char)proto;
/*@i@*/i = htonl(speed); /* borrow "i" to put speed into proper byte order */
/*@i@*/bcopy(&i, sirf+8, 4);
/* send at whatever baud we're currently using */
(void)sirf_write(pfd, sirf);
(void)nmea_send(pfd, "$PSRF100,%u,%u,8,1,0", speed, proto);
/* now spam the receiver with the config messages */
for(i = 0; i < (int)(sizeof(spd)/sizeof(spd[0])); i++) {
(void)serialSpeed(pfd, term, spd[i]);
(void)sirf_write(pfd, sirf);
(void)nmea_send(pfd, "$PSRF100,%u,%u,8,1,0", speed, proto);
(void)tcdrain(pfd);
(void)usleep(100000);
}
(void)serialSpeed(pfd, term, (int)speed);
(void)tcflush(pfd, TCIOFLUSH);
return 0;
}
/*@ -nullstate @*/
static int sirfProbe(int fd, char **version)
/* try to elicit a return packet with the firmware version in it */
{
/*@ +charint @*/
static unsigned char versionprobe[] = {
0xa0, 0xa2, 0x00, 0x02,
0x84, 0x00,
0x00, 0x84, 0xb0, 0xb3};
/*@ -charint @*/
char buf[MAX_PACKET_LENGTH];
ssize_t status, want;
gpsd_report(4, "probing with %s\n",
gpsd_hexdump(versionprobe, sizeof(versionprobe)));
if ((status = write(fd, versionprobe, sizeof(versionprobe))) != 10)
return -1;
/*
* Older SiRF chips had a 21-character version message. Newer
* ones (GSW 2.3.2 or later) have an 81-character version message.
* Accept either.
*/
want = 0;
if (expect(fd,"\xa0\xa2\x00\x15\x06", 5, 5))
want = 21;
else if (expect(fd,"\xa0\xa2\x00\x51\x06", 5, 5))
want = 81;
if (want) {
ssize_t len;
memset(buf, 0, sizeof(buf));
for (len = 0; len < want; len += status) {
status = read(fd, buf+len, sizeof(buf));
if (status == -1)
return -1;
}
gpsd_report(4, "%d bytes = %s\n", len, gpsd_hexdump(buf, (size_t)len));
*version = strdup(buf);
return 0;
} else {
*version = NULL;
return -1;
}
}
/*@ +nullstate @*/
static int sirfPortSetup(int fd, struct termios *term)
{
/* the firware upload defaults to 38k4, so let's go there */
return sirfSetProto(fd, term, PROTO_SIRF, 38400);
}
static int sirfVersionCheck(int fd, const char *version UNUSED,
const char *loader, size_t ls UNUSED,
const char *firmware, size_t fs UNUSED)
{
/*
* This implies that any SiRF loader and firmware image is good for
* any SiRF chip. We really want to do more checking here...
*/
return 0;
}
static int wait2seconds(int fd UNUSED)
{
/* again we wait, this time for our uploaded code to start running */
gpsd_report(1, "waiting 2 seconds...\n");
return (int)sleep(2);
}
static int wait5seconds(int fd UNUSED)
{
/* wait for firmware upload to settle in */
gpsd_report(1, "waiting 5 seconds...\n");
return (int)sleep(5);
}
static int sirfPortWrapup(int fd, struct termios *term)
{
/* waitaminnit, and drop back to NMEA@4800 for luser apps */
return sirfSetProto(fd, term, PROTO_NMEA, 4800);
}
struct flashloader_t sirf_type = {
.name = "SiRF binary",
/* name of default flashloader */
.flashloader = "dlgsp2.bin",
/*
* I can't imagine a GPS firmware less than 256KB / 2Mbit. The
* latest build that I have (2.3.2) is 296KB. So 256KB is probably
* low enough to allow really old firmwares to load.
*
* As far as I know, USB receivers have 512KB / 4Mbit of
* flash. Application note APNT00016 (Alternate Flash Programming
* Algorithms) says that the S2AR reference design supports 4, 8
* or 16 Mbit flash memories, but with current firmwares not even
* using 60% of a 4Mbit flash on a commercial receiver, I'm not
* going to stress over loading huge images. The define below is
* 524288 bytes, but that blows up nearly 3 times as S-records.
* 928K srec -> 296K binary
*/
.min_firmware_size = 262144,
.max_firmware_size = 1572864,
/* a reasonable loader is probably 15K - 20K */
.min_loader_size = 15440,
.max_loader_size = 20480,
/* the command methods */
.probe = sirfProbe,
.port_setup = sirfPortSetup, /* before signal blocking */
.version_check = sirfVersionCheck,
.stage1_command = sirfSendUpdateCmd,
.loader_send = sirfSendLoader,
.stage2_command = wait2seconds,
.firmware_send = srecord_send,
.stage3_command = wait5seconds,
.port_wrapup = sirfPortWrapup, /* after signals unblock */
};
#endif /* defined(SIRFII_ENABLE) && defined(BINARY_ENABLE) */
|