1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# This file is Copyright (c) 2010 by the GPSD project
# BSD terms apply: see the file COPYING in the distribution root for details.
"""
A GPS simulator.
This is proof-of-concept code, not production ready; some functions are stubs.
"""
import sys, math, random, exceptions
import gps, gpslib
# First, the mathematics. We simulate a moving viewpoint on the Earth
# and a satellite with specified orbital elements in the sky.
class ksv:
"Kinematic state vector."
def __init__(self, time=0, lat=0, lon=0, alt=0, course=0,
speed=0, climb=0, h_acc=0, v_acc=0):
self.time = time # Seconds from epoch
self.lat = lat # Decimal degrees
self.lon = lon # Decimal degrees
self.alt = alt # Meters
self.course = course # Degrees from true North
self.speed = speed # Meters per second
self.climb = climb # Meters per second
self.h_acc = h_acc # Meters per second per second
self.v_acc = v_acc # Meters per second per second
def next(self, quantum=1):
"State after quantum."
self.time += quantum
avspeed = (2*self.speed + self.h_acc*quantum)/2
avclimb = (2*self.climb + self.v_acc*quantum)/2
self.alt += avclimb * quantum
self.speed += self.h_acc * quantum
self.climb += self.v_acc * quantum
distance = avspeed * quantum
# Formula from <http://williams.best.vwh.net/avform.htm#Rhumb>
# Initial point cannot be a pole, but GPS doesn't work at high.
# latitudes anyway so it would be OK to fail there.
# Seems to assume a spherical Earth, which means it's going
# to have a slight inaccuracy rising towards the poles.
# The if/then avoids 0/0 indeterminacies on E-W courses.
tc = gps.Deg2Rad(self.course)
lat = gps.Deg2Rad(self.lat)
lon = gps.Deg2Rad(self.lon)
lat += distance * math.cos(tc)
dphi = math.log(tan(lat/2+math.pi/4)/math.tan(self.lat/2+math.pi/4))
if abs(lat-self.lat) < sqrt(1e-15):
q = cos(self.lat)
else:
q = (lat-self.lat)/dphi
dlon = -distance * sin(tc) / q
self.lon = gp.Rad2Deg(math.mod(self.lon + dlon + pi, 2 * math.pi) - math.pi)
self.lat = gp.Rad2Deg(lat)
# Satellite orbital elements are available at:
# <http://www.ngs.noaa.gov/orbits/>
# Orbital theory at:
# <http://www.wolffdata.se/gps/gpshtml/anomalies.html>
class satellite:
"Orbital elements of one satellite. PRESENTLY A STUB"
def __init__(self, prn):
self.prn = prn
def position(self, time):
"Return right ascension and declination of satellite,"
pass
# Next, the command interpreter. This is an object that takes an
# input source in the track description language, interprets it into
# sammples that might be reported by a GPS, and calls a reporting
# class to generate output.
class gpssimException(exceptions.Exception):
def __init__(self, message, filename, lineno):
self.message = message
self.filename = filename
self.lineno = lineno
def __str__(self):
return '"%s", %d:' % (self.filename, self.lineno)
class gpssim:
"Simulate a moving sensor, with skyview."
active_PRNs = range(1, 24+1) + [134,]
def __init__(self, gpstype):
self.ksv = ksv()
self.ephemeris = {}
# This sets up satellites at random. Not really what we want.
for PRN in simulator.active_PRNs:
for (prn, satellite) in self.ephemeris.items():
self.skyview[prn] = (random.randint(-60, +61),
random.randint(0, 359))
self.have_ephemeris = False
self.channels = {}
self.outfmt = outfmt
self.status = gps.STATUS_NO_FIX
self.mode = gps.MODE_NO_FIX
self.validity = "V"
self.satellites_used = 0
self.filename = None
self.lineno = 0
def parse_tdl(self, line):
"Interpret one TDL directive."
line = line.strip()
if "#" in line:
line = line[:line.find("#")]
if line == '':
return
fields = line.split()
command = fields[0]
if command == "time":
self.ksv.time = gps.isotime(fields[1])
elif command == "location":
(self.lat, self.lon, self.alt) = map(float, fiels[1:])
elif command == "course":
self.ksv.time = float(fields[1])
elif command == "speed":
self.ksv.speed = float(fields[1])
elif command == "climb":
self.ksv.climb = float(fields[1])
elif command == "acceleration":
(self.ksv.h_acc, self.ksv.h_acc) = map(float, fields[1:])
elif command == "snr":
self.channels[int(fields[1])] = float(fields[2])
elif command == "go":
self.go(int(fields[1]))
elif command == "status":
try:
code = fields[1]
self.status = {"no_fix":0, "fix":1, "dgps_fix":2}[code.lower()]
except KeyError:
raise gpssimException("invalid status code '%s'" % code,
self.filename, self.lineno)
elif command == "mode":
try:
code = fields[1]
self.status = {"no_fix":1, "2d":2, "3d":3}[code.lower()]
except KeyError:
raise gpssimException("invalid mode code '%s'" % code,
self.filename, self.lineno)
elif command == "satellites":
self.satellites_used = int(fields[1])
elif command == "validity":
self.validity = fields[1]
else:
raise gpssimException("unknown command '%s'" % fields[1],
self.filename, self.lineno)
# FIX-ME: add syntax for ephemeris elements
self.lineno += 1
def filter(self, input, output):
"Make this a filter for file-like objects."
self.filename = input.name
self.lineno = 1
self.output = output
for line in input:
self.execute(line)
def go(self, seconds):
"Run the simulation for a specified number of seconds."
for i in range(seconds):
self.ksv.next()
if self.have_ephemeris:
self.skyview = {}
for (prn, satellite) in self.ephemeris.items():
self.skyview[prn] = satellite.position(time)
self.output.write(self.gpstype.report(self))
# Reporting classes need to have a report() method returning a string
# that is a sentence (or possibly several sentences) reporting the
# state of the simulation. Presently we have only one, for NMEA
# devices, but the point of the architecture is so that we could simulate
# others - SirF, Evermore, whatever.
MPS_TO_KNOTS = 1.9438445 # Meters per second to knots
class NMEA:
"NMEA output generator."
def __init__(self):
self.sentences = ("RMC", "GGA",)
self.counter = 0
def add_checksum(self, str):
"Concatenate NMEA checksum and trailer to a string"
sum = 0
for (i, c) in enumerate(str):
if i == 0 and c == "$":
continue
sum ^= ord(c)
str += "*%02X\r\n" % sum
return str
def degtodm(self, angle):
"Decimal degrees to GPS-style, degrees first followed by minutes."
(fraction, integer) = math.modf(angle)
return math.floor(angle) * 100 + fraction * 60;
def GGA(self, sim):
"Emit GGA sentence describing the simulation state."
tm = time.gmtime(sim.ksv.time)
gga = \
"$GPGGA,%02d%02d%02d,%09.4f,%c,%010.4f,%c,%d,%02d," % (
tm.tm_hour,
tm.tm_min,
tm.tm_sec,
self.degtodm(abs(sim.ksv.lat)), "SN"[sim.ksv.lat > 0],
self.degtodm(abs(sim.ksv.lon)), "WE"[sim.ksv.lon > 0],
sim.status,
sim.satellites_used);
# HDOP calculation goes here
gga += ","
if sim.mode == gps.MODE_3D:
gga += "%.1f,M" % self.ksv.lat
gga += ","
gga += "%.3f,M," % gpslib.wg84_separation(sim.ksv.lat, sim.ksv.lon)
# Magnetic variation goes here
# gga += "%3.2f,M," % mag_var
gga += ",,"
# Time in seconds since last DGPS update goes here
gga += ","
# DGPS station ID goes here
return self.add_checksum(gga);
def GLL(self, sim):
"Emit GLL sentence describing the simulation state."
tm = time.gmtime(sim.ksv.time)
gll = \
"$GPLL,%09.4f,%c,%010.4f,%c,%02d%02d%02d,%s," % (
self.degtodm(abs(sim.ksv.lat)), "SN"[sim.ksv.lat > 0],
self.degtodm(abs(sim.ksv.lon)), "WE"[sim.ksv.lon > 0],
tm.tm_hour,
tm.tm_min,
tm.tm_sec,
sim.validity,
)
# FAA mode indicator could go after these fields.
return self.add_checksum(gll);
def RMC(self, sim):
"Emit RMC sentence describing the simulation state."
tm = time.gmtime(sim.ksv.time)
rmc = \
"GPRMC,%02d%02d%02d,%s,%09.4f,%c,%010.4f,%c,%.1f,%02d%02d%02d," % (
tm.tm_hour,
tm.tm_min,
tm.tm_sec,
sim.validity,
self.degtodm(abs(sim.ksv.lat)), "SN"[sim.ksv.lat > 0],
self.degtodm(abs(sim.ksv.lon)), "WE"[sim.ksv.lon > 0],
sim.course * MPS_TO_KNOTS,
tm.tm_mday,
tm.tm_mon,
tm.tm_year % 100)
# Magnetic variation goes here
# rmc += "%3.2f,M," % mag_var
rmc += ",,"
# FAA mode goes here
return self.add_checksum(rmc);
def ZDA(self, sim):
"Emit ZDA sentence describing the simulation state."
tm = time.gmtime(sim.ksv.time)
zda = "$GPZDA,%02d%2d%02d,%02d,%02d,%04d" % (
tm.tm_hour,
tm.tm_min,
tm.tm_sec,
tm.tm_mday,
tm.tm_mon,
tm.tm_year,
)
# Local zone description, 00 to +- 13 hours, goes here
zda += ","
# Local zone minutes description goes here
zda += ","
return self.add_checksum(zda);
def report(self, sim):
"Report the simulation state."
out = ""
for sentence in self.sentences:
if type(sentence) == type(()):
(interval, sentence) = sentence
if self.counter % interval:
continue
out += apply(getattr(self, sentence), [sim])
self.counter += 1
return out
# The very simple main line.
if __name__ == "__main__":
try:
gpssim(NMEA).filter(sys.stdin, sys.stdout)
except gpssimException, e:
print >>sys.stderr, e
# gpssim.py ends here.
|