1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
/*
Copyright (C) 2000 T. Scott Dattalo
This file is part of the libgpsim_modules library of gpsim
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/lgpl-2.1.html>.
*/
/*
led.cc
This is an example module illustrating how gpsim modules may be created.
Additional examples may also be found with the gpsim.
This particular example creates a 7-segment, common cathode LED display.
Pin Numbering of LED:
--------------------
a
---
f | g | b
---
e | | c
---
d
cc = common cathode
Electrical:
----------
a ---|>|---+
b ---|>|---+
c ---|>|---+
d ---|>|---+
e ---|>|---+
f ---|>|---+
g ---|>|---+
|
cc
How It Works:
------------
Once the Led module has been built (and optionally installed), you
can include it in your .stc file. See the examples subdirectory.
*/
/* IN_MODULE should be defined for modules */
#define IN_MODULE
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <typeinfo>
#include "../config.h" // get the definition for HAVE_GUI
#ifdef HAVE_GUI
#include <gtk/gtk.h>
#endif
#include <cmath>
#include "../src/stimuli.h"
#include "../src/value.h"
#include "../src/gpsim_interface.h"
#include "led.h"
#include "../src/packages.h"
namespace Leds {
//--------------------------------------------------------------
//
// Create an "interface" to gpsim
//
class LED_Interface : public Interface {
private:
Led_base *led;
public:
virtual void SimulationHasStopped(gpointer object)
{
Update(object);
}
virtual void Update(gpointer /* object */ )
{
#ifdef HAVE_GUI
if (led) {
led->update();
}
#endif
}
explicit LED_Interface(Led_base *_led)
: Interface((gpointer *) _led), led(_led)
{
}
};
class Led_Input : public IOPIN {
public:
Led_Input(const std::string &n, Led_base *pParent);
virtual void setDrivenState(bool);
virtual void get(char *return_str, int len);
private:
Led_base *m_pParent;
};
//------------------------------------------------------------------------
//
Led_Input::Led_Input(const std::string &n, Led_base *pParent)
: IOPIN(n.c_str()), m_pParent(pParent)
{
}
void Led_Input::setDrivenState(bool bNewState)
{
IOPIN::setDrivenState(bNewState);
}
void Led_Input::get(char *return_str, int len)
{
if (return_str) {
strncpy(return_str, IOPIN::getState() ? "1" : "0", len);
}
}
//------------------------------------------------------------------------
#ifdef HAVE_GUI
void Led_7Segments::update()
{
if (get_interface().bUsingGUI()) {
gtk_widget_queue_draw(darea);
}
}
gboolean Led_7Segments::led7_expose_event(GtkWidget *widget, GdkEvent * ,
gpointer user_data)
{
Led_7Segments *led = static_cast<Led_7Segments *>(user_data);
g_return_val_if_fail(widget != nullptr, TRUE);
g_return_val_if_fail(GTK_IS_DRAWING_AREA(widget), TRUE);
GtkAllocation allocation;
gtk_widget_get_allocation(widget, &allocation);
guint max_width = allocation.width;
guint max_height = allocation.height;
// not a very O-O way of doing it... but here we go directly
// to the I/O port and get the values of the segments
int segment_states = led->getPinState();
cairo_t *cr = gdk_cairo_create(gtk_widget_get_window(widget));
cairo_rectangle(cr, 0.0, 0.0, max_width, max_height);
cairo_fill(cr);
for (int i = 0; i < 7; ++i) {
// common cathode, cathode must be low to turn
//digits on.
if ((segment_states & 1) == 0 && segment_states & (2 << i)) {
cairo_set_source_rgb(cr, 0.75, 0.0, 0.0);
} else {
cairo_set_source_rgb(cr, 0.25, 0.0, 0.0);
}
XfPoint *pts = &(led->seg_pts[i][0]);
cairo_move_to(cr, pts[0].x, pts[0].y);
for (int j = 1; j < MAX_PTS; ++j) {
cairo_line_to(cr, pts[j].x, pts[j].y);
}
cairo_line_to(cr, pts[0].x, pts[0].y);
cairo_fill(cr);
}
cairo_destroy(cr);
return TRUE;
}
//-------------------------------------------------------------------
// build_segments
//
// from Dclock.c (v.2.0) -- a digital clock widget.
// Copyright (c) 1988 Dan Heller <argv@sun.com>
// Modifications 2/93 by Tim Edwards <tim@sinh.stanford.edu>
// And further modifications by Scott Dattalo <scott@dattalo.com>
//
// Each segment on the LED is comprised of a 6 point polygon.
// This routine will calculate what those points should be and
// store them an arrary.
void Led_7Segments::build_segments(int w, int h)
{
XfPoint *pts;
float spacer, hskip, fslope, bslope, midpt, seg_width, segxw;
float invcosphi, invsinphi, invcospsi, invsinpsi, slope;
float dx1, dx2, dx3, dx4, dx5, dx6, dy1, dy2, dy5, dy6;
float xfactor, temp_xpts[4];
w_width = w;
w_height = h;
// Hard code the display parameters...
float space_factor = 0.13;
float width_factor = 0.13;
float sxw = 0.13;
float angle = 6;
/* define various useful constants */
segxw = sxw * w;
slope = angle;
seg_width = width_factor * w;
spacer = w * space_factor;
hskip = seg_width * 0.125;
fslope = 1 / (segxw / seg_width + 1 / slope);
bslope = -1 / (segxw / seg_width - 1 / slope);
midpt = h / 2;
/* define some trigonometric values */
/* phi is the forward angle separating two segments;
psi is the reverse angle separating two segments. */
invsinphi = sqrt(1 + fslope * fslope) / fslope;
invcosphi = sqrt(1 + 1 / (fslope * fslope)) * fslope;
invsinpsi = sqrt(1 + bslope * bslope) / -bslope;
invcospsi = sqrt(1 + 1 / (bslope * bslope)) * bslope;
/* define offsets from easily-calculated points for 6 situations */
dx1 = hskip * invsinphi / (slope / fslope - 1);
dy1 = hskip * invcosphi / (1 - fslope / slope);
dx2 = hskip * invsinpsi / (1 - slope / bslope);
dy2 = hskip * invcospsi / (bslope / slope - 1);
dx3 = hskip * invsinphi;
dx4 = hskip * invsinpsi;
dx5 = hskip * invsinpsi / (1 - fslope / bslope);
dy5 = hskip * invcospsi / (bslope / fslope - 1);
dx6 = dy5;
dy6 = dx5;
/* calculate some simple reference points */
temp_xpts[0] = spacer + (h - seg_width) / slope;
temp_xpts[1] = spacer + (h - seg_width / 2) / slope + segxw / 2;
temp_xpts[2] = spacer + h / slope + segxw;
temp_xpts[3] = temp_xpts[0] + segxw;
xfactor = w - 2 * spacer - h / slope - segxw;
// calculate the digit positions
pts = seg_pts[TOP];
pts[0].y = pts[1].y = 0;
pts[0].x = temp_xpts[2] - dx3;
pts[1].x = w - spacer - segxw + dx4;
pts[2].y = pts[5].y = (seg_width / 2) - dy5 - dy6;
pts[5].x = temp_xpts[1] + dx5 - dx6;
pts[2].x = pts[5].x + xfactor;
pts[3].y = pts[4].y = seg_width;
pts[4].x = temp_xpts[3] + dx4;
pts[3].x = temp_xpts[0] + xfactor - dx3;
pts = &(seg_pts[MIDDLE][0]);
pts[0].y = pts[1].y = midpt - seg_width / 2;
pts[0].x = spacer + (h - pts[0].y) / slope + segxw;
pts[1].x = pts[0].x - segxw + xfactor;
pts[2].y = pts[5].y = midpt;
pts[3].y = pts[4].y = midpt + seg_width / 2;
pts[5].x = spacer + (h - pts[5].y) / slope + segxw / 2;
pts[2].x = pts[5].x + xfactor;
pts[4].x = pts[0].x - seg_width / slope;
pts[3].x = spacer + (h - pts[3].y) / slope + xfactor;
pts = &(seg_pts[BOTTOM][0]);
pts[3].y = pts[4].y = (float)h;
pts[2].y = pts[5].y = h - (seg_width / 2) + dy5 + dy6;
pts[0].y = pts[1].y = h - seg_width;
pts[0].x = spacer + segxw + seg_width / slope + dx3;
pts[1].x = spacer + (h - pts[1].y) / slope + xfactor - dx4;
pts[4].x = spacer + segxw - dx4;
pts[5].x = spacer + segxw / 2 + (h - pts[5].y) / slope + dx6 - dx5;
pts[2].x = pts[5].x + xfactor;
pts[3].x = spacer + xfactor + dx3;
pts = &(seg_pts[TOP_LEFT][0]);
pts[0].y = seg_width / 2 - dy6 + dy5;
pts[1].y = seg_width + dy2;
pts[2].y = seg_pts[MIDDLE][0].y - 2 * dy1;
pts[3].y = seg_pts[MIDDLE][5].y - 2 * dy6;
pts[4].y = seg_pts[MIDDLE][0].y;
pts[5].y = seg_width - dy1;
pts[0].x = temp_xpts[1] - dx5 - dx6;
pts[1].x = temp_xpts[3] - dx2;
pts[2].x = seg_pts[MIDDLE][0].x + 2 * dx1;
pts[3].x = seg_pts[MIDDLE][5].x - 2 * dx6;
pts[4].x = spacer + (h - pts[4].y) / slope;
pts[5].x = temp_xpts[0] + dx1;
pts = &(seg_pts[BOT_LEFT][0]);
pts[0].y = seg_pts[MIDDLE][5].y + 2 * dy5;
pts[1].y = seg_pts[MIDDLE][4].y + 2 * dy2;
pts[2].y = seg_pts[BOTTOM][0].y - dy1;
pts[3].y = seg_pts[BOTTOM][5].y - 2 * dy6;
pts[4].y = h - seg_width + dy2;
pts[5].y = midpt + seg_width / 2;
pts[0].x = seg_pts[MIDDLE][5].x - 2 * dx5;
pts[1].x = seg_pts[MIDDLE][4].x - 2 * dx2;
pts[2].x = seg_pts[BOTTOM][0].x - dx3 + dx1;
pts[3].x = seg_pts[BOTTOM][5].x - 2 * dx6;
pts[4].x = spacer + seg_width / slope - dx2;
pts[5].x = spacer + (midpt - seg_width / 2) / slope;
pts = &(seg_pts[TOP_RIGHT][0]);
pts[0].y = seg_width / 2 - dy5 + dy6;
pts[1].y = seg_width - dy2;
pts[2].y = midpt - seg_width / 2;
pts[3].y = midpt - 2 * dy5;
pts[4].y = pts[2].y - 2 * dy2;
pts[5].y = seg_width + dy1;
pts[0].x = temp_xpts[1] + xfactor + dx5 + dx6;
pts[1].x = temp_xpts[3] + xfactor + dx1;
pts[2].x = seg_pts[MIDDLE][0].x + xfactor;
pts[3].x = seg_pts[MIDDLE][5].x + xfactor + dx5 * 2;
pts[4].x = seg_pts[TOP_LEFT][4].x + xfactor + dx2 * 2;
pts[5].x = temp_xpts[0] + xfactor - dx1;
pts = &(seg_pts[BOT_RIGHT][0]);
pts[0].y = seg_pts[MIDDLE][2].y + 2 * dy6;
pts[1].y = midpt + seg_width / 2;
pts[2].y = h - seg_width + dy1;
pts[3].y = h - (seg_width / 2) + dy6 - dy5;
pts[4].y = h - seg_width - dy2;
pts[5].y = seg_pts[MIDDLE][3].y + 2 * dy1;
pts[0].x = seg_pts[MIDDLE][2].x + 2 * dx6;
pts[1].x = seg_pts[MIDDLE][3].x + segxw;
pts[2].x = seg_pts[BOTTOM][1].x + dx4 + segxw - dx1;
pts[3].x = seg_pts[BOTTOM][2].x + 2 * dx5;
pts[4].x = seg_pts[BOTTOM][1].x + dx4 + dx2;
pts[5].x = seg_pts[MIDDLE][3].x - 2 * dx1;
}
void Led_7Segments::build_window()
{
darea = gtk_drawing_area_new();
gtk_widget_set_size_request(darea, 100, 110);
g_signal_connect(darea, "expose_event", G_CALLBACK(led7_expose_event), this);
gtk_widget_set_events(darea, GDK_EXPOSURE_MASK);
gtk_widget_show(darea);
set_widget(darea);
}
#endif
//--------------------------------------------------------------
Led_7Segments::Led_7Segments(const char *name)
: Module(name, "7 Segment LED")
{
#ifdef HAVE_GUI
if (get_interface().bUsingGUI()) {
build_segments(100, 110);
build_window();
}
#endif
interface_seq_no = get_interface().add_interface(new LED_Interface(this));
create_iopin_map();
}
Led_7Segments::~Led_7Segments()
{
for (int i = 0; i < 8; i++) {
removeSymbol(m_pins[i]);
}
get_interface().remove_interface(interface_seq_no);
//RRRgtk_widget_destroy(darea);
}
//--------------------------------------------------------------
// create_iopin_map
//
// This is where the information for the Module's package is defined.
// Specifically, the I/O pins of the module are created.
void Led_7Segments::create_iopin_map()
{
// Define the physical package.
// The Package class, which is a parent of all of the modules,
// is responsible for allocating memory for the I/O pins.
//
// The 7-segment LED has 8 pins
create_pkg(8);
float ypos = 6.0;
for (int i = 1; i <= 8; i++) {
package->setPinGeometry(i, 0.0, ypos, 0, false);
ypos += 12.0;
}
// Here, we create and name the I/O pins. In gpsim, we will reference
// the bit positions as LED.seg0, LED.seg1, ..., where LED is the
// user-assigned name of the 7-segment LED
m_pins[0] = new Led_Input("cc", this);
addSymbol(m_pins[0]);
assign_pin(1, m_pins[0]);
std::string seg = "seg";
int i;
char ch;
for (ch = '0', i = 1; i < 8; i++, ch++) {
m_pins[i] = new Led_Input(seg + ch, this);
addSymbol(m_pins[i]);
assign_pin(i + 1, m_pins[i]);
}
}
//--------------------------------------------------------------
unsigned int Led_7Segments::getPinState()
{
unsigned int s = 0;
for (int i = 1; i < 8; i++) {
double delta_v = m_pins[i]->get_nodeVoltage() - m_pins[0]->get_nodeVoltage();
s = (s >> 1) | (delta_v > 1.5 ? 0x80 : 0);
}
return s;
}
//--------------------------------------------------------------
// construct
Module * Led_7Segments::construct(const char *_new_name = nullptr)
{
return new Led_7Segments(_new_name);
}
class ColorAttribute : public Value {
public:
explicit ColorAttribute(Led *_led)
: Value("color", "On color of LED"), m_led(_led)
{
}
virtual void get(char *return_str, int len);
virtual void set(const char *buffer, int buf_size = 0);
virtual void set(Value *v);
virtual bool Parse(const char *pValue, Colors &bValue);
private:
Led *m_led;
};
void ColorAttribute::set(Value *v)
{
if (typeid(*v) == typeid(String)) {
char buff[20];
v->get(buff, sizeof(buff));
set(buff);
} else {
throw TypeMismatch("set ", "ColorAttribute", v->showType());
}
}
void ColorAttribute::set(const char *buffer, int /* len */ )
{
if (buffer) {
Colors color;
if (Parse(buffer, color)) {
m_led->set_on_color(color);
} else {
std::cout << "ColorAttribute::set " << buffer << " unknown color\n";
}
}
}
void ColorAttribute::get(char *return_str, int len)
{
if (return_str) {
switch (m_led->get_on_color()) {
case RED:
g_strlcpy(return_str, "red", len);
break;
case ORANGE:
g_strlcpy(return_str, "orange", len);
break;
case GREEN:
g_strlcpy(return_str, "green", len);
break;
case YELLOW:
g_strlcpy(return_str, "yellow", len);
break;
case BLUE:
g_strlcpy(return_str, "blue", len);
break;
}
}
}
bool ColorAttribute::Parse(const char *pValue, Colors &bValue)
{
std::string s(pValue);
if (s == "red") {
bValue = RED;
return true;
} else if (s == "orange") {
bValue = ORANGE;
return true;
} else if (s == "green") {
bValue = GREEN;
return true;
} else if (s == "yellow") {
bValue = YELLOW;
return true;
} else if (s == "blue") {
bValue = BLUE;
return true;
}
return false;
}
class ActiveStateAttribute : public Value {
public:
explicit ActiveStateAttribute(Led *_led)
: Value("ActiveState", "high or low"), m_led(_led)
{
}
virtual void get(char *return_str, int len);
virtual void set(const char *buffer, int buf_size = 0);
virtual void set(Value *v);
virtual bool Parse(const char *pValue, ActiveStates &bValue);
private:
Led *m_led;
};
void ActiveStateAttribute::set(Value *v)
{
if (typeid(*v) == typeid(String)) {
char buff[20];
v->get(buff, sizeof(buff));
set(buff);
} else {
throw TypeMismatch("set ", "ActiveStateAttribute", v->showType());
}
}
void ActiveStateAttribute::set(const char *buffer, int /* len */ )
{
if (buffer) {
ActiveStates activestate;
if (Parse(buffer, activestate)) {
m_led->set_the_activestate(activestate);
} else {
std::cout << "ActiveStateAttribute::set " << buffer << " unknown active state\n";
}
}
}
void ActiveStateAttribute::get(char *return_str, int len)
{
if (return_str) {
switch (m_led->get_the_activestate()) {
case HIGH:
g_strlcpy(return_str, "high", len);
break;
case LOW:
g_strlcpy(return_str, "low", len);
break;
}
}
}
bool ActiveStateAttribute::Parse(const char *pValue, ActiveStates &bValue)
{
if (strncmp("high", pValue, sizeof("high")) == 0) {
bValue = HIGH;
return true;
} else if (strncmp("low", pValue, sizeof("low")) == 0) {
bValue = LOW;
return true;
}
return false;
}
//-------------------------------------------------------------
// Led (simple)
//-------------------------------------------------------------
#ifdef HAVE_GUI
void Led::update()
{
if (get_interface().bUsingGUI()) {
gtk_widget_queue_draw(darea);
}
}
#endif
void Led::set_on_color(Colors color)
{
if (color != on_color) {
on_color = color;
#ifdef HAVE_GUI
if (get_interface().bUsingGUI()) {
update();
}
#endif
}
}
void Led::set_the_activestate(ActiveStates activestate)
{
if (activestate != the_activestate) {
if (activestate == HIGH) {
m_pin->set_Vth(0.0);
} else {
m_pin->set_Vth(3.5); // includes LED voltage drop
}
the_activestate = activestate;
#ifdef HAVE_GUI
if (get_interface().bUsingGUI()) {
update();
}
#endif
}
}
#ifdef HAVE_GUI
gboolean Led::led_expose_event(GtkWidget *widget, GdkEvent * ,
gpointer user_data)
{
Led *led = static_cast<Led *>(user_data);
g_return_val_if_fail(widget != nullptr, TRUE);
g_return_val_if_fail(GTK_IS_DRAWING_AREA(widget), TRUE);
GtkAllocation allocation;
gtk_widget_get_allocation(widget, &allocation);
guint max_width = allocation.width;
guint max_height = allocation.height;
GdkWindow *gdk_win = gtk_widget_get_window(widget);
cairo_t *cr = gdk_cairo_create(gdk_win);
// Led is on when DrivenState=TRUE in current HIGH active state OR
// when DrivenState=FALSE in current LOW active state.
double delta_v ;
if (led->get_the_activestate() == HIGH) {
delta_v = led->m_pin->get_nodeVoltage() - led->m_pin->get_Vth();
} else {
delta_v = led->m_pin->get_Vth() - led->m_pin->get_nodeVoltage();
}
if (delta_v > 1.5) {
gdk_cairo_set_source_color(cr, &led->led_on_color[led->on_color]);
} else {
gdk_cairo_set_source_color(cr, &led->led_segment_off_color);
}
cairo_arc(cr, max_width / 2, max_height / 2, max_width / 2, 0.0, 2 * G_PI);
cairo_fill(cr);
cairo_destroy(cr);
return FALSE;
}
void Led::build_window()
{
darea = gtk_drawing_area_new();
w_height = 20;
w_width = 20;
gtk_widget_set_size_request(darea, w_height, w_width);
g_signal_connect(darea,
"expose_event",
G_CALLBACK(led_expose_event),
this);
gtk_widget_set_events(darea, GDK_EXPOSURE_MASK);
gtk_widget_show(darea);
set_widget(darea);
// The default 'on' color is bright red
gdk_color_parse("red3", &led_on_color[RED]);
gdk_color_parse("orange", &led_on_color[ORANGE]);
gdk_color_parse("green", &led_on_color[GREEN]);
gdk_color_parse("yellow", &led_on_color[YELLOW]);
gdk_color_parse("blue", &led_on_color[BLUE]);
// The `off' color is dark red
led_segment_off_color.red = 0x4000;
led_segment_off_color.green = 0x0000;
led_segment_off_color.blue = 0x0000;
}
#endif
//--------------------------------------------------------------
Led::Led(const char *name)
: Module(name, "Simple LED"), on_color(RED), the_activestate(HIGH)
{
create_iopin_map();
// the following will load the driver of the input as would a real
// LED
m_pin->set_Zth(150.0);
m_pin->set_Vth(0.0);
#ifdef HAVE_GUI
if (get_interface().bUsingGUI()) {
build_window();
}
#endif
m_colorAttribute = new ColorAttribute(this);
addSymbol(m_colorAttribute);
m_activestateAttribute = new ActiveStateAttribute(this);
addSymbol(m_activestateAttribute);
interface_seq_no = get_interface().add_interface(new LED_Interface(this));
}
Led::~Led()
{
removeSymbol(m_pin);
removeSymbol(m_colorAttribute);
removeSymbol(m_activestateAttribute);
get_interface().remove_interface(interface_seq_no);
/*
if (darea)
gtk_widget_destroy(darea);
darea = 0;
*/
delete m_activestateAttribute;
delete m_colorAttribute;
}
//--------------------------------------------------------------
// create_iopin_map
//
// This is where the information for the Module's package is defined.
// Specifically, the I/O pins of the module are created.
void Led::create_iopin_map()
{
create_pkg(1);
// Position pin on left side of package
package->set_pin_position(1, 0.5);
// Define the LED Cathode. (The anode is implicitly tied to VCC)
m_pin = new Led_Input("in", this);
addSymbol(m_pin);
assign_pin(1, m_pin);
}
//--------------------------------------------------------------
// construct
Module * Led::construct(const char *_new_name = nullptr)
{
return new Led(_new_name);
}
}
|