1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
|
/*
Copyright (C) 2006 Scott Dattalo
This file is part of the libgpsim_modules library of gpsim
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/lgpl-2.1.html>.
*/
/*
i2c.cc
I2C Module for gpsim
OVERVIEW:
The I2C Module is a plugin module for gpsim (the gnupic simulator)
that implements the I2C protocol.
BACKGROUND:
<describe the I2C protocol>
Application Layer
-----------------
The application layer is responsible for interpreting and generating
packets.
Physical Layer:
--------------
The physical layer consists of two wires that model the I2C bus
SCL - Open Collector
SDA - Open Collector
Changes on these lines due to external stimuli will be propogated up
to the Datalink Layer. Similarly, the Datalink layer will relay changes
in the application layer to the I/O pins
Implementation Details
----------------------
The I2C module is designed to be a dynamic library that is loaded
by gpsim. A typical scenario would be to start gpsim, load a
processor, load the I2C module and connect the I2C module to the
processor. The I2C module communicates to the simulator through 3
different mechanisms. First, the I/O pins of the I2C module are
manipulated; e.g. the SCL and SDA lines swing low and high. This
is a low level physical-type interface. Second, gpsim has a callback
mechanism tied into it's real-time timer. The I2C module will set
'callback breakpoints' to occur at specific instances of
time. Finally, the last method of communication is through simulator
attributes.
*** FIXME ***
gpsim is a single-threaded software application. This makes it
somewhat difficult to implement the state machines in the I2C
module. So to get around this problem, the I2C module will spawn a
thread for the application layer. In essence, this thread will allow
a set of functions to be written that can send and receive byte
streams. pThread mutexs will ensure that this thread safely
communicates with the I2C state machines that run in the context of
the simulator thread.
*/
//------------------------------------------------------------------------
// I2C State Machines
//
// The I2C state machines are responible for the physical layer of the I2CMaster.
// Here is the general timing of an I2C transaction:
//
// ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __
// SDA \__/___X___X___X___X___X___X___\_________/___X___X___X___X___X___X___X___/ \__/
// S A7 A6 A5 A4 A3 A2 A1 R/W ACK D7 D6 D5 D4 D3 D2 D1 D0 /ACK P
// ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____
// SCL \__/1\_/2\_/3\_/4\_/5\_/6\_/7\_/8\_/9\___/1\_/2\_/3\_/4\_/5\_/6\_/7\_/8\_/9\_/
//
// S = Start
// P = Stop
// Ai - Address bits
// Di - Data bits
// R/W - Read or Write. A low means write, i.e. transmission from master to slave
// ACK - Acknowledge. The slave holds SDA low to acknowledge the previous transfer
//
// The gpsim I2C controller breaks the transaction down into smaller
// pieces and utilizes state machines for each piece. At the lowest
// level, there are three state machines: Start-bit, Stop-bit, and
// Data-bit. At the next higher level, is the byte transfer state
// machine. And finally, at the highest level is the stream transfer
// state machine.
//
// The start, stop, and data bit state machines use combinations of
// timing events and I/O events as inputs for state transitions. For
// example, a start bit begins with the bus idle (SDA and SCL both
// high) and then with the master driving SDA low. There could be a
// delay between SDA being driven low and it actually falling low
// (e.g. excessive bus capacitamce or bus hardware error). So the
// state machine doesn't make a transition into the start state until
// SDA is actually falls low. Similarly, when a bit is being
// transmitted, the I2C specification requires certain setup and hlod
// times between SDA and SCL. A gpsim cycle callback ensures these
// timings are met and the state machine transitions only after the
// callback triggers.
//
//
// Start bit State Machine:
// ____________________
// SDA \_____________
// __________________________________
// SCL
// idle | sendingStart | Start
//
// The host controller is notified 1uS after SDA goes low.
//
//
// Data bit transfer State Machine:
// _____________________________________ __________________________
// bus SDA_____________________________________X__________________________
// ____________________ ________
// bus SCL \__________________________________/
// ________________________________ _______________________________
// SDA________________________________X_______________________________
// __________ ____________________
// SCL \________________________________/
//
// TransferE TransferA TransferB TransferC TransferD TransferE
//
// There are 5 states in the bit-transmit state machine:
//
// TransferA -- SCL has been driven low and we're waiting for it to fall
// TransferB -- SCL has fallen low. We're now waiting t_HD;DAT before driving SDA
// TransferC -- SDA has been driven with new data. Now wait t_SU;DAT to release SCL
// TransferD -- SCL has been released and we're waiting for it to rise
// TransferE -- SCL has risen high. The bit has been transferred.
//
//
// Stop bit State Machine
// ----------------------
//
// __________ __________ _________
// bus SDA__________X__________\_______________/
// _______________________________________________
// bus SCL__________X__________/
// _____________________ _________________
// SDA__________X__________\_______/
// __________ ____________________________________
// SCL__________X__________/
//
// any state Transfer StopA StopB Idle
// SDA = 0
//
// any state - The stop bit can be initiated at any point. When the
// request to send a stop bit is made, the state machine is forced
// into the "transfer a bit state". The bit transferred is a
// '0'. Once this transition completes, the state machine enters the
// Stop bit state machine.
//
// StopA - SCL is High SDA is Low. Waiting t_HD;DAT before driving SDA high
// StopB - SDA has been released and we're waiting for it to rise.
// Idle - SDA has been risen high. The master is notified
//
#include <iostream>
#include <cstdio>
#include "../src/../config.h"
#include "../src/stimuli.h"
#include "../src/modules.h"
#include "../src/gpsim_time.h"
#include "../src/ui.h"
#include "../src/value.h"
#include "i2c.h"
//using namespace gpsim;
//using namespace I2C_Module
namespace I2C_Module {
//#define DEBUG
#if defined(DEBUG)
#define Dprintf(arg) {printf("%5d:%s ",__LINE__,__FUNCTION__); printf arg; }
#else
#define Dprintf(arg) {}
#endif
//static int verbose =1;
#define Vprintf(arg) { if (verbose) {printf("%s:%d ",__FILE__,__LINE__); printf arg;} }
#ifndef PRINTF_INT64_MODIFIER
#ifndef WIN32
#define PRINTF_INT64_MODIFIER "ll"
#endif
#endif
FILE *g_TraceOut = stdout;
// A pointer to the simulator's global defined cycle counter class:
// (there's an issue with DLL's directly accessing globally declared
// objects, so we'll use an accessor function to get a pointer to them
// [or in this case, it])
Cycle_Counter *gcycles = nullptr;
//----------------------------------------
#if 0 // defined but not used
static double get_time()
{
double t = (double) gcycles->get();
t /= 2.0;
double r = floor(t / 1e6);
t -= r * 1e6;
return t;
}
#endif
//------------------------------------------------------------------------
#define isSCLlow() (m_pSCL->getDrivenState() == false)
#define isSCLhigh() (m_pSCL->getDrivenState() == true)
#define isSDAlow() (m_pSDA->getDrivenState() == false)
#define isSDAhigh() (m_pSDA->getDrivenState() == true)
//------------------------------------------------------------------------
// I2CPin
//
// An I2C I/O pin is a bidirectional I/O pin that has a strong driver
// for a low state, but a weak driver for the high state. There are
// several ways to model that behavior in gpsim. The way chosen here
// is to derive from the IO_open_collector class and to modify the
// high and low drive output impedances.
//
//
class I2C_PIN : public IO_open_collector {
public:
I2C_PIN(I2CMaster *pMaster, const char *_name)
: IO_open_collector(_name), m_pI2Cmaster(pMaster)
{
bDrivingState = true;
bDrivenState = true;
update_direction(IO_bi_directional::DIR_OUTPUT, true);
// Set the pullup resistance to 10k ohms:
set_Zpullup(10e3);
update_pullup('1', // Turn on the pullup resistor.
false); // Don't update the node. (none is attached).
}
void debug()
{
std::cout << name()
<< " digital_state=" << (getDrivingState() ? "high" : "low")
<< " Vth=" << get_Vth()
<< " Zth=" << get_Zth()
<< " driving=" << (getDriving() ? "true\n" : "false\n");
}
bool isLow()
{
return bDrivingState == false && bDrivenState == false;
}
bool isHigh()
{
return bDrivingState == true && bDrivenState == true;
}
void setDrivingState(bool new_state)
{
bDrivingState = new_state;
//bDrivenState = new_state;
if (snode) {
snode->update();
}
}
protected:
// Parent module
I2CMaster *m_pI2Cmaster;
};
//------------------------------------------------------------------------
class I2C_SDA_PIN : public I2C_PIN {
public:
I2C_SDA_PIN(I2CMaster *pMaster, const char *_name)
: I2C_PIN(pMaster, _name)
{
}
virtual void setDrivenState(bool new_dstate)
{
bool diff = new_dstate ^ bDrivenState;
Dprintf(("I2C SDA setDrivenState %d diff %d\n", new_dstate, diff));
if (m_pI2Cmaster && diff) {
bDrivenState = new_dstate;
m_pI2Cmaster->new_sda_edge(new_dstate);
}
}
};
//------------------------------------------------------------------------
class I2C_SCL_PIN : public I2C_PIN {
public:
I2C_SCL_PIN(I2CMaster *pMaster, const char *_name)
: I2C_PIN(pMaster, _name)
{
}
virtual void setDrivenState(bool new_state)
{
bool diff = new_state ^ bDrivenState;
Dprintf(("I2C SCL setDrivenState %d\n", new_state));
if (m_pI2Cmaster && diff) {
bDrivenState = new_state;
m_pI2Cmaster->new_scl_edge(bDrivenState);
}
}
};
//------------------------------------------------------------------------
// I2C attributes
//
// The I2C attributes expose an interface to the I2C module. Each attribute
// can be treated as a variable that a user (or a script) can access.
// There are two C++ methods used for assigning new values. The first
// is the 'set()' method defined in the Value base class. This is the one
// used whenever the user assigns values. The other method is setFromMaster().
// This used whenever the value is changed by the I2C state machine.
//
//------------------------------------------------------------------------
// I2C_TxBuffer
// Data written to this attribute will get transmitted to the client (TouchPad)
//
class I2C_TxBuffer : public Integer {
I2CMaster *i2c;
public:
explicit I2C_TxBuffer(I2CMaster *);
virtual void set(gint64);
void setFromMaster(gint64);
};
// I2C_TxReady
// This read-only attribute let's the user know if the TxBuffer is ready
// to accept another byte.
class I2C_TxReady : public Boolean {
I2CMaster *i2c;
public:
explicit I2C_TxReady(I2CMaster *);
virtual void set(bool);
void setFromMaster(bool);
};
// I2C_RxBuffer
// Holds the last byte received from the client.
class I2C_RxBuffer : public Integer {
I2CMaster *i2c;
public:
explicit I2C_RxBuffer(I2CMaster *);
virtual void set(gint64);
void setFromMaster(gint64);
};
// I2C_RxSequence
// gpsim attaches a sequence number to every received byte. This
// attribute allows the user to query that number.
class I2C_RxSequence : public Integer {
I2CMaster *i2c;
public:
explicit I2C_RxSequence(I2CMaster *);
virtual void set(gint64);
void setFromMaster(gint64);
};
// I2C_Send7BitAddress
class I2C_Send7BitAddress : public Integer {
I2CMaster *i2c;
public:
explicit I2C_Send7BitAddress(I2CMaster *);
virtual void set(gint64);
void setFromMaster(gint64);
};
// I2C_Stop
class I2C_Stop : public Boolean {
I2CMaster *i2c;
public:
explicit I2C_Stop(I2CMaster *);
virtual void set(bool);
void setFromMaster(bool);
};
// I2C_Address
class I2C_Address : public Integer {
I2CMaster *i2c;
public:
explicit I2C_Address(I2CMaster *);
virtual void set(gint64);
// void setFromMaster(gint64);
};
// I2C_Address
class I2C_Debug : public Integer {
I2CMaster *i2c;
public:
explicit I2C_Debug(I2CMaster *);
virtual void set(gint64);
// void setFromMaster(gint64);
};
//------------------------------------------------------------------------
//
I2CMaster::I2CMaster(const char *_name)
: TriggerObject(), Module(_name),
m_bitCount(0), m_command(0),
m_xfr_data(0),
m_TxData(0),
m_nextBit(false),
future_cycle(0),
m_pI2CModule(nullptr),
m_uState(eI2CIdle),
m_mState(eI2CIdleBus),
m_MSBmask(1 << 8)
{
// Transmit and Receive propogation delays
// The units are simulation cycles.
tClkToData = 10;
tClkToSample = 10;
m_pSCL = new I2C_SCL_PIN(this, "scl");
addSymbol(m_pSCL);
m_pSDA = new I2C_SDA_PIN(this, "sda");
addSymbol(m_pSDA);
mTxByte = new I2C_TxBuffer(this);
mTxReady = new I2C_TxReady(this);
mRxByte = new I2C_RxBuffer(this);
mRxSequence = new I2C_RxSequence(this);
mSend7BitAddress = new I2C_Send7BitAddress(this);
mStop = new I2C_Stop(this);
mAddress = new I2C_Address(this);
mDebug = new I2C_Debug(this);
//initializeAttributes();
addSymbol(mTxByte);
addSymbol(mTxReady);
addSymbol(mRxByte);
addSymbol(mRxSequence);
addSymbol(mSend7BitAddress);
addSymbol(mStop);
addSymbol(mAddress);
addSymbol(mDebug);
// We may also want a logging function...
}
I2CMaster::~I2CMaster()
{
removeSymbol(mTxByte);
removeSymbol(mTxReady);
removeSymbol(mRxByte);
removeSymbol(mRxSequence);
removeSymbol(mSend7BitAddress);
removeSymbol(mStop);
removeSymbol(mAddress);
removeSymbol(mDebug);
removeSymbol(m_pSCL);
removeSymbol(m_pSDA);
delete mTxByte;
delete mTxReady;
delete mRxByte;
delete mRxSequence;
delete mSend7BitAddress;
delete mStop;
delete mAddress;
delete mDebug;
}
void I2CMaster::startIdle()
{
m_pSDA->setDrivingState(true);
m_pSCL->setDrivingState(true);
m_uState = eI2CIdle;
setNextMacroState(eI2CIdleBus);
}
bool I2CMaster::checkSDA_SCL(bool bSDA, bool bSCL)
{
Dprintf((" SDA %d--%d SCL %d--%d\n",
m_pSDA->getDrivenState(), bSDA,
m_pSCL->getDrivenState(), bSCL));
if (m_pSCL->getDrivenState() == bSCL &&
m_pSDA->getDrivenState() == bSDA) {
Dprintf((" Match\n"));
return true;
}
startIdle();
return false;
}
//------------------------------------------------------------------------
// callback() - timer callbacks
//
// The I2C state machines insert wait states and set timeouts. When
// these trigger, control is sent here.
//
void I2CMaster::callback()
{
Dprintf(("\n"));
debug();
// We get here because at some point in the past
// we made the request to receive control at this point
// in time. So find out what it was:
future_cycle = 0;
switch (m_uState) {
case eI2CStartB:
if (checkSDA_SCL(false, true)) {
setNextMicroState(eI2CStartC, 1000);
m_pSCL->setDrivingState(false);
return;
}
break;
case eI2CTransferB:
// First half of bit transfer where we're driving the clock
// If SCL high, then there's something clamping it high (that's a
// bus error).
// If SCL is low then we'll drive out the new data bit and wait
// a few uSec before driving SCL high again
if (isSCLlow()) {
setNextMicroState(eI2CTransferC, 5);
m_pSDA->setDrivingState(m_nextBit);
return;
}
case eI2CTransferC:
// Second half of bit transfer. We've just placed the new data bit
// onto SDA. SCL should still be low. If it isn't, then there's
// something clamping it high (and that's a bus error).
// If SCL is low, then we'll drive it high and set a 1mSec time
// out. When SCL rises, we'll capture the edge and advance the
// state machine.
if (isSCLlow()) {
setNextMicroState(eI2CTransferD, 1000);
m_pSCL->setDrivingState(true);
return;
}
case eI2CTransferE:
if (isSCLhigh()) {
setNextMicroState(eI2CTransferA, 1000);
m_pSCL->setDrivingState(false);
return;
}
case eI2CStopA:
if (checkSDA_SCL(false, true)) {
setNextMicroState(eI2CStopB, 1000);
m_pSDA->setDrivingState(true);
}
default:
// Disable the bus
;
}
// We reach here if either there was a timeout or
// an error in the state machine.
startIdle();
}
void I2CMaster::callback_print()
{
std::cout << "I2CMaster " << CallBackID << '\n';
}
//------------------------------------------------------------------------
// readBit()
//
// Should only be called when SCL is caught rising high.
//
// readBit() shifts the TransferData register left 1 position and
// copies the state of SDA to the LSB position. The MSB shifted out
// becomes the nextBit that will be transmitted (that bit is written
// to SDA later on).
//
bool I2CMaster::readBit()
{
if (m_bitCount) {
m_xfr_data <<= 1;
m_xfr_data |= m_pSDA->getDrivenState() ? 1 : 0;
m_bitCount--;
m_nextBit = (m_xfr_data & m_MSBmask) == m_MSBmask;
Dprintf(("I2CMaster SCL : Rising edge, data in=%u, nextOut=%d bit_count=%u\n",
m_xfr_data & 1, m_nextBit, m_bitCount));
return true;
}
return false;
}
const char *I2CMaster::microStateName(eI2CMicroState state)
{
switch (state) {
case eI2CIdle:
return "eI2CIdle";
case eI2CStartA:
return "eI2CStartA";
case eI2CStartB:
return "eI2CStartB";
case eI2CStartC:
return "eI2CStartC";
case eI2CBusy:
return "eI2CBusy";
case eI2CTransferA:
return "eI2CTransferA";
case eI2CTransferB:
return "eI2CTransferB";
case eI2CTransferC:
return "eI2CTransferC";
case eI2CTransferD:
return "eI2CTransferD";
case eI2CTransferE:
return "eI2CTransferE";
case eI2CStopA:
return "eI2CStopA";
case eI2CStopB:
return "eI2CStopB";
default:
;
}
return "eI2Cunknown";
}
const char *I2CMaster::macroStateName(eI2CMacroState state)
{
switch (state) {
case eI2CStop:
return "eI2CStop";
case eI2CTransfer:
return "eI2CTransfer";
case eI2CMaster:
return "eI2CMaster";
case eI2CSlave:
return "eI2CSlave";
case eI2CIdleBus:
return "eI2CIdleBus";
default:
;
}
return "eI2Cunknown";
}
void I2CMaster::debug()
{
#if defined(DEBUG)
std::cout <<
" SDA:" << m_pSDA->getDrivenState() <<
" SCL:" << m_pSCL->getDrivenState() <<
" microstate:" << microStateName(m_uState) <<
" macrostate:" << macroStateName(m_mState) <<
'\n';
std::cout << " xfr_data:" << std::hex << m_xfr_data
<< " bits:" << m_bitCount
<< " next bit:" << m_nextBit
<< " fc: 0x" << future_cycle
<< '\n';
#endif
}
//------------------------------------------------------------------------
// new_scl_edge ( bool direction )
//
// Handle SCL transitions
//
void I2CMaster::new_scl_edge(bool direction)
{
int curBusState = m_uState;
if (verbose) {
Vprintf(("I2CMaster::new_scl_edge: %d\n", direction));
debug();
}
if (direction) {
// Rising edge
switch (m_uState) {
case eI2CTransferD:
if (readBit()) {
setNextMicroState(eI2CTransferE, 5);
} else if (m_mState == eI2CTransfer) {
transferCompleted();
} else if (m_mState == eI2CStop) {
setNextMicroState(eI2CStopA, 5);
}
break;
case eI2CStopB:
// Stop is complete.
if (m_mState == eI2CStop) {
setNextMacroState(eI2CIdleBus);
stopCompleted();
}
default:
;
}
} else {
// Falling edge
Dprintf(("I2CMaster SCL : Falling edge,data=%d\n ", m_nextBit));
debug();
switch (m_uState) {
case eI2CIdle :
m_pSDA->setDrivingState(true);
break;
case eI2CStartC:
case eI2CStartB:
setNextMicroState(eI2CTransferC, 1000);
// If the clock went low because of someone else, still clamp.
m_pSCL->setDrivingState(false);
// Start bit has been sent. SDA and SCL are both low.
// hold the start state for a short moment
startCompleted();
break;
case eI2CTransferA:
// We're driving the clock and have just managed to pull it
// low. Now set up to drive the next data bit (if we're reading
// then the next data bit is a '1').
if (m_bitCount) {
setNextMicroState(eI2CTransferB, 5);
} else {
transferCompleted();
}
break;
default :
m_pSDA->setDrivingState(true); // Release the bus
break;
}
}
if ((bool)verbose && m_uState != curBusState) {
Vprintf(("I2C_EE::new_scl_edge() new bus state = %d\n", m_uState));
debug();
}
}
//------------------------------------------------------------------------
// new_sda_edge ( bool direction )
//
// Handle SDA transitions
//
void I2CMaster::new_sda_edge(bool direction)
{
Dprintf(("I2CMaster::new_sda_edge: direction:%d\n", direction));
debug();
if (m_pSCL->getDrivenState()) {
// SCL is high.
// If SDA just went low, then we caught a start
// If SDA just went high, then we caught a stop.
if (direction) {
// stop bit
Dprintf(("I2CMaster SDA : Rising edge in SCL high => stop bit\n"));
m_uState = eI2CIdle;
} else {
// start bit
Dprintf(("I2CMaster SDA : Falling edge in SCL high => start bit\n"));
if (m_uState != eI2CStartA) {
Dprintf((" Another Master has started a transaction\n"));
// Release SDA and listen to the address
m_pSDA->setDrivingState(true);
m_uState = eI2CListenToAddress;
} else {
// Wait 1us before notifying the module.
setNextMicroState(eI2CStartB, 5);
m_bitCount = 0;
m_xfr_data = 0;
}
}
} else {
// SCL is low - SDA changed states. We need to make sure the SDA
// state matches the SDA state we're driving. If they're different
// then that means some other I2C device changed the SDA
// state. We need to wait until SCL changes states before
// declaring some other master has control.
//if (direction != m_nextBit)
// cout << "Warning SDA unexpectedly changed to: " << direction << endl;
// Another thing we can do is record the time when SDA changed.
// This could be useful for recording slave response times.
// For now, we do nothing:
;
}
}
void I2CMaster::reset(RESET_TYPE )
{
if (future_cycle) {
gcycles->clear_break(this);
future_cycle = 0;
}
startIdle();
#if defined(DEBUG)
std::cout << "I2CMaster reset\n";
debug();
#endif
}
//------------------------------------------------------------------------
// sendStart
// If the bus is idle, send a start bit.
//
I2CMaster::eI2CResult I2CMaster::sendStart()
{
if (m_uState == eI2CIdle) {
// Drive SDA low and set a 1mS timeout
setNextMicroState(eI2CStartA, 1000);
m_pSDA->setDrivingState(false);
return eI2CResSuccess;
}
return eI2CResFailed;
}
//------------------------------------------------------------------------
// sendStop() - unconditionally initiate the 'stop' state machine
//
// Depending on the current state of the I2C bus, the stop state
// machine will transition the I2C bus so that a stop bit can be
// sent. In all cases, the bus needs to be in the state where SCL is
// high and SDA is low. The stop bit occurs when SDA is then driven
// high.
//
// There are 4 possibilities:
// SCL=0 SDA=0 - need to drive SCL high
// SCL=0 SDA=1 - drive SDA low followed by SCL high
// SCL=1 SDA=0 - drive SDA high ==> this will be the stop bit
// SCL=1 SDA=1 - drive SCL low followed by SDA low then SCL high.
//
I2CMaster::eI2CResult I2CMaster::sendStop()
{
// Can't send a stop if we're a slave.
if (m_mState == eI2CStop || m_mState == eI2CSlave) {
return eI2CResFailed;
}
setNextMacroState(eI2CStop);
if (isSCLhigh()) { // && m_pSCL->getDrivingState()) {
if (isSDAhigh()) {
// SCL is high, SDA high.
m_bitCount = 0;
m_xfr_data = 0;
m_nextBit = false;
setNextMicroState(eI2CTransferA, 5);
m_pSCL->setDrivingState(false);
} else {
// SCL is high, SDA low -- perfect.
// Now we only need to drive SDA high and we're done.
setNextMicroState(eI2CStopA, 5);
}
} else {
if (isSDAhigh()) {
// SCL low, SDA high
// We need to drive SDA low followed by SCL high.
setNextMicroState(eI2CTransferC, 5);
m_pSDA->setDrivingState(false);
} else {
// SCL low, SDA low
// We need to drive SCL high.
setNextMicroState(eI2CTransferD, 5);
m_pSCL->setDrivingState(true);
}
}
return eI2CResSuccess;
}
//------------------------------------------------------------------------
// send8BitData(unsigned int data)
//
// The 'Transfer' state machine is initialized here. A transfer can
// only commence if we've seen a start (or have just completed a
// transfer earlier). SCL should be sitting low.
I2CMaster::eI2CResult I2CMaster::send8BitData(unsigned int data)
{
Dprintf((" send8BitData:0x%x\n", data));
if (isSCLlow()) {
mStop->setFromMaster(false);
setNextMacroState(eI2CTransfer);
m_bitCount = 9; // There are 8 data bits and 1 ACK bit
m_xfr_data = (data << 1) | 1; // LSB = 1 ==> we'll release SDA
// during ACK
m_nextBit = (data & m_MSBmask) == m_MSBmask;
// We could also remember how long it's been since SCL has gone
// low and possibly wait a shorter amount of time.
setNextMicroState(eI2CTransferB, 5);
}
return eI2CResFailed;
}
//------------------------------------------------------------------------
// wait_uSec - suspends the I2C state machine.
//
void I2CMaster::wait_uSec(unsigned int uSec)
{
guint64 fc = gcycles->get() + (uSec * 2);
if (future_cycle) {
gcycles->reassign_break(future_cycle, fc, this);
} else {
gcycles->set_break(fc, this);
}
future_cycle = fc;
}
//------------------------------------------------------------------------
//
void I2CMaster::setNextMicroState(eI2CMicroState nextState, unsigned int waitTime)
{
Dprintf((" curr:%s next:%s\n", microStateName(m_uState), microStateName(nextState)));
m_uState = nextState;
wait_uSec(waitTime);
}
//------------------------------------------------------------------------
//
void I2CMaster::setNextMacroState(eI2CMacroState nextState)
{
Dprintf((" curr:%s next:%s\n", macroStateName(m_mState), macroStateName(nextState)));
m_mState = nextState;
mStop->setFromMaster(m_mState == eI2CStop);
}
Module *I2CMaster::construct(const char *new_name)
{
gcycles = &get_cycles();
I2CMaster *pI2CMaster = new I2CMaster(new_name);
pI2CMaster->create_iopin_map();
return pI2CMaster;
}
//------------------------------------------------------------------------
void I2CMaster::send7BitAddress(unsigned int addr)
{
Dprintf(("\n"));
if (eI2CResSuccess == sendStart()) {
mTxByte->setFromMaster(addr << 1);
}
}
//------------------------------------------------------------------------
void I2CMaster::startCompleted()
{
Dprintf(("\n"));
send8BitData(mTxByte->getVal());
}
//------------------------------------------------------------------------
void I2CMaster::stopCompleted()
{
Dprintf(("\n"));
mStop->setFromMaster(true);
}
//------------------------------------------------------------------------
void I2CMaster::transferCompleted()
{
Dprintf(("\n"));
}
//--------------------------------------------------------------
// create_iopin_map
//
// This is where the information for the I2C Master's package is defined.
// Specifically, the I/O pins of the module are created.
void I2CMaster::create_iopin_map()
{
// Define the physical package. It has two pins
create_pkg(2);
assign_pin(1, m_pSCL);
assign_pin(2, m_pSDA);
}
//========================================================================
// I2C Attributes
I2C_TxBuffer::I2C_TxBuffer(I2CMaster *_i2c)
: Integer("tx", 0, "I2C Transmit Register - byte currently transmitting"), i2c(_i2c)
{
}
void I2C_TxBuffer::set(gint64 i)
{
i &= 0xff;
if (i2c) {
i2c->send8BitData((int)i);
}
Integer::set(i);
}
void I2C_TxBuffer::setFromMaster(gint64 i)
{
Integer::set(i);
}
//########################################
// TxREady - reflects the bus state - if the I2C bus is not owned by another
// master, then TxReady is true
I2C_TxReady::I2C_TxReady(I2CMaster *_i2c)
: Boolean("tx_ready", false,
"I2C Transmit Ready - a read-only register that is false only\n"
"when some other master controls the I2C bus."), i2c(_i2c)
{
}
void I2C_TxReady::set(bool )
{
}
void I2C_TxReady::setFromMaster(bool b)
{
Boolean::set(b);
}
//########################################
I2C_RxBuffer::I2C_RxBuffer(I2CMaster *_i2c)
: Integer("rx", 0, "I2C Receive Register - most recently received byte"), i2c(_i2c)
{
}
void I2C_RxBuffer::set(gint64 )
{
}
void I2C_RxBuffer::setFromMaster(gint64 i)
{
Integer::set(i);
}
//########################################
I2C_RxSequence::I2C_RxSequence(I2CMaster *_i2c)
: Integer("rx_sequence", 0, "I2C Receive Sequence number - increments on each recieved byte"), i2c(_i2c)
{
}
void I2C_RxSequence::set(gint64 )
{
}
void I2C_RxSequence::setFromMaster(gint64 i)
{
Integer::set(i);
}
//########################################
I2C_Send7BitAddress::I2C_Send7BitAddress(I2CMaster *_i2c)
: Integer("slaveaddr", 0, "I2C slave address - a write to this will send a slave address"), i2c(_i2c)
{
}
void I2C_Send7BitAddress::set(gint64 i)
{
Dprintf(("setting addr to 0x%lx\n", i));
Integer::set(i);
int addr = (int)(i & 0xff);
i2c->send7BitAddress(addr);
}
void I2C_Send7BitAddress::setFromMaster(gint64 i)
{
Integer::set(i);
}
//########################################
I2C_Stop::I2C_Stop(I2CMaster *_i2c)
: Boolean("stop", 0, "I2C stop - transmit a stop bit now"), i2c(_i2c)
{
}
void I2C_Stop::set(bool b)
{
if (b) {
Boolean::set(b);
i2c->sendStop();
}
}
void I2C_Stop::setFromMaster(bool b)
{
Boolean::set(b);
}
//########################################
I2C_Address::I2C_Address(I2CMaster *_i2c)
: Integer("addr", 0, "I2C master address - a write to this sets the master address"), i2c(_i2c)
{
}
void I2C_Address::set(gint64 )
{
}
//########################################
I2C_Debug::I2C_Debug(I2CMaster *_i2c)
: Integer("debug", 0, "I2C debug - a write sets debug verbosity"), i2c(_i2c)
{
}
void I2C_Debug::set(gint64 )
{
i2c->debug();
}
} // end of namespace I2C_Module
|