File: usart.cc

package info (click to toggle)
gpsim 0.32.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,644 kB
  • sloc: cpp: 121,258; asm: 54,223; ansic: 13,576; python: 9,708; sh: 4,695; makefile: 1,575; lex: 1,139; yacc: 854; pascal: 511; perl: 93; awk: 44; xml: 41
file content (1183 lines) | stat: -rw-r--r-- 27,308 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*
   Copyright (C) 1998,1999,2000,2001 T. Scott Dattalo

This file is part of the libgpsim_modules library of gpsim

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/lgpl-2.1.html>.
*/

/*

  usart.cc

  This is gpsim's universal synchronous/asynchronous receiver/transceiver.

  Features:

    8 or 9 bit receiver and transmitter
    0 or 1 start bits
    0 or 1 stop bits
    0 or 1 parity bits and even/odd selectable
    variable sized transmit and receive buffers

*/


/* IN_MODULE should be defined for modules */
#define IN_MODULE
#define DEFAULT_BAUD    9600

#include <string>

#include "../config.h"    // get the definition for HAVE_GUI
#ifdef HAVE_GUI
#include <gtk/gtk.h>
#include <gdk/gdk.h>
#endif

#include <glib.h>

#include "usart.h"

#include <assert.h>
#include <ctype.h>
#include <cstdio>
#include <iostream>

#include "../src/gpsim_interface.h"
#include "../src/modules.h"
#include "../src/processor.h"
#include "../src/stimuli.h"
#include "../src/trigger.h"
#include "../src/value.h"
class PIR_SET;


//#define DEBUG
#if defined(DEBUG)
#define Dprintf(arg) {printf("module-%s:%d-%s() ",__FILE__,__LINE__,__FUNCTION__); printf arg; }
#else
#define Dprintf(arg) {}
#endif

#define HAVE_TXFIFO

static bool bIsLow(char state)
{
  return state == '0' || state == 'w';
}


static bool bIsHigh(char state)
{
  return state == '1' || state == 'W';
}


/**********************************************************************************

             gpsim's USART module


  The  USART module is a general purpose universal synchronous/asynchronous
serial receiver and transmitter. In other words, it's a serial port. It's
purpose is to provide a tool to assist in the debugging of serial interfaces.
Users can load this module and tie it to their receive and transmit pins
of their simulated PIC's. Then experiments can be conducted on things like
baud rate variation, transmit inundation, protocol development, etc.

The design
of this dynamically loadable module mimics the USART peripheral found in PIC
microcontrollers. In fact, the USARTModule class is derived from the USART_MODULE
class that is instantiated by simulated PIC's. There are some notable differences,
however. For example, the registers from which the usart is constructed behave
differently. Most notably, the spbrg (serial port baud rate generator) is not
confined to the limited number of discrete baud rates.


**********************************************************************************/


//--------------------------------------------------------------
//
//

class USART_RXPIN : public IO_bi_directional_pu {
public:
  USARTModule *usart;

  USART_RXPIN(USARTModule *_usart, const char *opt_name = nullptr)
    : IO_bi_directional_pu(opt_name)
  {
    usart = _usart;
    // Let the pin think it's in the high state. If this is wrong,
    // then the I/O pin driving it will correct it. (Starting off
    // low prevents the start bit from being captured.)
    // Note, may want to add a flag that indicates if the pin
    // has ever been driven at all. This way, we can capture the
    // first edge. Or we could add another parameter to the constructor.
    bDrivenState = true;
    update_direction(0, true);  // Make the RX pin an input.
    bPullUp = true;
    Zpullup = 10e3;
  }

  void setDrivenState(bool new_dstate) override
  {
    bool diff = new_dstate ^ bDrivenState;
    Dprintf((" usart module rxpin new state=%d time:0x%" PRINTF_GINT64_MODIFIER "x=%" PRINTF_GINT64_MODIFIER "d\n", new_dstate, get_cycles().get(), get_cycles().get()));

    if (usart && diff) {
      bDrivenState = new_dstate;
      IOPIN::setDrivenState(new_dstate);
      usart->new_rx_edge(bDrivenState);
    }
  }
};


//--------------------------------------------------------------
//
//

class USART_TXPIN : public IO_bi_directional {
public:
  USARTModule *usart;

  USART_TXPIN(USARTModule *_usart, const char *opt_name = nullptr)
    : IO_bi_directional(opt_name)
  {
    usart = _usart;
    bDrivingState = true;
    update_direction(1, true);  // Make the TX pin an output.
  }
};


//=================================================================
//
//  TXREG
//
//  Create a transmit register based upon the transmit register
// defined in the main gpsim code.
//

class TXREG : public TriggerObject {
private:
  bool empty_flag;
  gint64 baud;

  guint64 last_time;
  guint64 start_time;
  guint64 future_time;

  int bits_per_byte;

  double  stop_bits;

  unsigned int txr;    // Transmit register
  int bit_count;       // used while transmitting.
  unsigned int tx_byte;

/*
 * Unused
  enum TX_STATES {
    TX_TRANSMITTING
  }  transmit_state;
*/

  bool use_parity;
  bool parity;         // 0 = even, 1 = odd

public:
  USART_TXPIN *txpin;
  USARTModule *usart;

  virtual bool is_empty()
  {
    return empty_flag;
  }
  virtual void empty()
  {
    empty_flag = 1;
  }
  virtual void full()
  {
    empty_flag = 0;
  }
  virtual void assign_pir_set(PIR_SET * /* new_pir_set */ ) {}

  TXREG()
  {
    txpin = 0;
    usart = 0;
    bits_per_byte = 8;
    bit_count = 0;
    txr = 0;
    stop_bits = 1;
    use_parity = 0;
    parity = false;
    set_baud_rate(DEFAULT_BAUD);
    tx_byte = '0';
    empty_flag = 1;
  }

  guint64 time_per_bit()
  {
    guint64 tpb;
    if (baud <= 0) 
        baud = DEFAULT_BAUD;  //arbitrary

    if (get_active_cpu())
     tpb = (guint64)(get_cycles().instruction_cps() / baud);
    else
     tpb = 0;
    Dprintf(("TX time_per_bit() tpb=%ld baud=%ld\n", tpb, baud));
    // A time per bit of zero causes a callback in the past, which is invalid
    if ( tpb == 0 )
      tpb = 1;
    return tpb;
  }


  void set_bits_per_byte(int num_bits)
  {
    bits_per_byte = num_bits;
  }

  void set_baud_rate(gint64 new_baud)
  {
    baud = new_baud;
  }

  void set_stop_bits(double new_stop_bits)
  {
    stop_bits = new_stop_bits;
  }

  void set_noparity()
  {
    use_parity = 0;
  }

  void set_parity(bool new_parity)
  {
    use_parity = 1;
    parity = new_parity;
  }

  void callback() override
  {
    Dprintf((" usart module TXREG time:0x%" PRINTF_GINT64_MODIFIER "x=%" PRINTF_GINT64_MODIFIER "d txr=0x%x bit_count=%d\n", get_cycles().get(), get_cycles().get(), txr, bit_count));
    last_time = get_cycles().get();
    start_time = last_time;

    if (txpin) {
      txpin->putState((txr & 1) ? true : false);
    }

    if (bit_count) {
      txr >>= 1;
      bit_count--;
      future_time = last_time + time_per_bit();
      get_cycles().set_break(future_time, this);

    } else {
      // We've sent the whole byte.
      /* output data from buffer if configured */
#ifdef HAVE_TXFIFO
      if (usart && usart->mGetTxByte(tx_byte)) {
        mSendByte(tx_byte);

      } else
#endif
        empty();
    }
  }

  void mSendByte(unsigned _tx_byte)
  {
    if (0) {
      std::cout << "\n\nTXREG::" << __FUNCTION__ << "\n\n\n";
    }

    mBuildTXpacket(_tx_byte);
    last_time = get_cycles().get();
    future_time = last_time + time_per_bit();
    get_cycles().set_break(future_time, this);
    full();
  }

private:
  void mBuildTXpacket(unsigned int tb)
  {
    tx_byte = tb & ((1 << bits_per_byte) - 1);
    txr = ((3 << bits_per_byte) | tx_byte) << 1;
    // total bits = byte + start and stop bits
    bit_count = bits_per_byte + 1 + 1;

    if (0) {
      std::cout << std::hex << "TXREG::" << __FUNCTION__ << " byte to send 0x" << tb
           << " txr 0x" << txr << "  bits " << bit_count << '\n';
    }
  }
};


//=================================================================
//
//  RCREG
//
// Create a receive register
//
//

class RCREG : public TriggerObject {
public:
  USART_RXPIN *rxpin;

#define MAX_PW  0xfffffff

#define RX_ERR_OVERRUN        1
#define RX_ERR_UNDERRUN       2
#define RX_ERR_TOOMANY_EDGES  3

  enum RX_STATES {
    RS_WAITING_FOR_START,
    RS_RECEIVING,
    RS_STOPPED,
    RS_OVERRUN,
    RS_START_BIT
  } receive_state;

  /**************************/
  // RCREG constructor
  /**************************/
  explicit RCREG(USARTModule *);

  void set_bits_per_byte(int num_bits)
  {
    bits_per_byte = num_bits;
  }
  guint64 time_per_bit()
  {
      guint64 tpb;
      if (baud <= 0) 
          baud = DEFAULT_BAUD;  //arbitrary

      if (get_active_cpu())
        tpb = (guint64)(get_cycles().instruction_cps() / baud + 0.5);
      else
        tpb = 0;
      Dprintf(("RX time_per_bit() tpb=%ld baud=%ld\n", tpb, baud));
      // A time per bit of zero causes a callback in the past, which is invalid
      if ( tpb == 0 )
        tpb = 1;
      return tpb;
  }


  void set_baud_rate(gint64 new_baud)
  {
    baud = new_baud;
  }
  void set_stop_bits(double new_stop_bits)
  {
    stop_bits = new_stop_bits;
  }

  void set_noparity()
  {
    use_parity = 0;
  }

  void set_parity(bool new_parity)
  {
    use_parity = 1;
    parity = new_parity;
  }

  void callback() override;

  void start();
  void new_rx_edge(bool bit);

private:
  USARTModule *m_usart;

  char m_cLastRXState;
  guint64 future_time;

  // Configuration information
  int     bits_per_byte;
  double  stop_bits;
  bool    use_parity;
  bool    parity;         // 0 = even, 1 = odd
  gint64  baud;
  unsigned int rx_byte;
  int     rx_count;

  bool autobaud;
};


//------------------------------------------------------------------------

RCREG::RCREG(USARTModule *pUsart)
  : rxpin(nullptr), m_usart(pUsart), m_cLastRXState('?'), parity(false),
    rx_byte(0), rx_count(0)
{
  assert(m_usart);
  receive_state = RS_WAITING_FOR_START;
  autobaud = false;
  baud = DEFAULT_BAUD;
  set_stop_bits(0.9);
  set_noparity();
  set_bits_per_byte(8);
}


//------------------------------------------------------------------------
void RCREG::callback()
{
  Dprintf((" usart module RCREG time:0x%" PRINTF_GINT64_MODIFIER "x=%" PRINTF_GINT64_MODIFIER "d state=0x%x bit=%d\n", get_cycles().get(), get_cycles().get(), receive_state, bIsHigh(m_cLastRXState)));

  switch (receive_state) {
  case RS_WAITING_FOR_START:
    Dprintf(("waiting for start\n"));
    break;

  case RS_START_BIT:    // should now be in middle of start bit
    if (bIsLow(m_cLastRXState)) {
      receive_state = RS_RECEIVING;
      rx_count = bits_per_byte + use_parity;
      rx_byte = 0;
      future_time = get_cycles().get() + time_per_bit();

      if (!autobaud) {
        get_cycles().set_break(future_time, this);
      }

    } else { // Not valid start bit
      receive_state = RS_WAITING_FOR_START;
    }

    break;

  case RS_RECEIVING:
    if (rx_count--) {
      rx_byte = (rx_byte >> 1) | (bIsHigh(m_cLastRXState) ?
                                  1 << (bits_per_byte - 1) : 0);
      future_time = get_cycles().get() + time_per_bit();

      if (!autobaud) {
        get_cycles().set_break(future_time, this);
      }

    } else if (bIsHigh(m_cLastRXState)) { // on stop bit
      m_usart->newRxByte(rx_byte);
      m_usart->show_tx(rx_byte);
      receive_state = RS_WAITING_FOR_START;

    } else {
      std::cout << "USART module RX overrun error\n";
      receive_state = RS_WAITING_FOR_START;
    }

    break;

  case RS_STOPPED:
    receive_state = RS_WAITING_FOR_START;
    std::cout << "received a stop bit\n";
    break;

  default:
    break;
  }
}


//------------------------------------------------------------------------
void RCREG::start()
{
  receive_state = RS_START_BIT;
  future_time = get_cycles().get() + time_per_bit() / 2;

  if (!autobaud) {
    if ( !get_cycles().set_break(future_time, this) )
    {
      // There's a problem, probably Baud rate too high for the CPU clock
      // best we can do is behave as if the break has happened
      callback();
    }
  }

  Dprintf((" usart module RCREG current cycle=0x%" PRINTF_GINT64_MODIFIER "x future_cycle=0x%" PRINTF_GINT64_MODIFIER "x\n", get_cycles().get(), future_time));
}


//------------------------------------------------------------------------
//  new_rx_edge(bool bit)
//
//  This routine gets called when there's a change on the
//  RX line. The time the edge occurred is stored into an
//  event buffer. No effort is made here to decode a byte;
//  instead, decoding will take place in callback().

void RCREG::new_rx_edge(bool /* bit */ )
{
  // Save the event state
  char currentRXState = rxpin->getBitChar();

  if (currentRXState != m_cLastRXState) {
    m_cLastRXState = currentRXState;

    switch (receive_state) {
    case RS_WAITING_FOR_START:
      if (bIsLow(currentRXState)) {
        start();
        Dprintf(("Start bit at t=0x%" PRINTF_GINT64_MODIFIER "x\n", get_cycles().get()));
      }

      break;

    case RS_RECEIVING:
      break;

    case RS_OVERRUN:
      break;

    default:
      break;
    }

    /**/
  }
}


//------------------------------------------------------------------------
class USART_IO : public IO_bi_directional_pu {
public:
  USARTModule *usart;

  USART_IO()
    : usart(nullptr)
  {
    std::cout << "USART_IO constructor - do nothing\n";
  }

  USART_IO(USARTModule *_usart, unsigned int , const char *opt_name)
    : IO_bi_directional_pu(opt_name), usart(_usart)
  {
    bDrivenState = true;
    update_direction(0, true);  // Make the RX pin an input.
    bPullUp = true;
    Zpullup = 10e3;
  }

  void setDrivenState(bool new_dstate) override
  {
    bool diff = new_dstate ^ bDrivenState;

    //    Dprintf((" usart module %s new state=%d\n",name(),new_dstate));

    if (usart && diff) {
      bDrivenState = new_dstate;
      IOPIN::setDrivenState(new_dstate);
    }
  }
};


//
//  USART attributes
//
//  Provide attributes that allow the user to dynamically
// configure the USART module
//
// Attribute    Default
//    Name      Value
// -------------------
//   txbaud       9600
//   rxbaud       9600
//   txreg         --
//   rxreg         --
//   parity        0
//   start_bits    1
//   stop_bits     1
//


class RxBaudRateAttribute : public Integer {
public:
  RCREG *rcreg;

  explicit RxBaudRateAttribute(RCREG *prcreg)
    : Integer("rxbaud", DEFAULT_BAUD, "USART Module Receiver baud rate"), rcreg(prcreg)
  {
    assert(rcreg);
  }

  void set(Value *v) override
  {
    Integer::set(v);
    gint64 b;
    get(b);
    rcreg->set_baud_rate(b);
    std::cout << "Setting Rx baud rate attribute to " << std::dec << b << "\n";
  }
  std::string toString() override
  {
    return Integer::toString("%" PRINTF_INT64_MODIFIER "d");
  }
};


class TxBaudRateAttribute : public Integer {
public:
  TXREG *txreg;

  explicit TxBaudRateAttribute(TXREG *ptxreg)
    : Integer("txbaud", DEFAULT_BAUD, "USART Module Transmitter baud rate"), txreg(ptxreg)
  {
    assert(txreg);
  }

  void set(Value *v) override
  {
    Integer::set(v);
    gint64 b;
    get(b);
    txreg->set_baud_rate(b);
    std::cout << "Setting Tx baud rate attribute to " << std::dec << b << "\n";
  }
  std::string toString() override
  {
    return Integer::toString("%" PRINTF_INT64_MODIFIER "d");
  }
};


class TxBuffer : public Integer {
  USARTModule *usart;

public:
  explicit TxBuffer(USARTModule *_usart)
    : Integer("tx", 0, "Add character, byte, or string to TX buffer"), usart(_usart)
  {
  }
  void set(gint64 i) override
  {
    i &= 0xff;

    //std::cout << name() << " sending byte 0x" << std::hex << i << std::endl;

    if (usart) {
      usart->SendByte(i);
    }

    Integer::set(i);
  }

  void set(Value *v) {
      if (typeid(*v) == typeid(String)) {
	  char buf[v->toString().length() + 1];
	  v->get(buf, sizeof(buf));
	  set(buf);
      } else {
	  Integer::set(v);
      }
  }

  void set(const char *buffer) {

      int i = 0;
      while (char c = buffer[i++]) {
	  if (c == '\\') {
	      c = buffer[i];
	      switch (c) {
	       case 'n':
		  c = '\n';
		  break;
	       case 'r':
		  c = '\r';
		  break;
	       case 't':
		  c = '\t';
		  break;
	       case '\0':
		  c = '\\';
		  break;
	       default:
		  break;
	      }
	      if (buffer[i]) i++;
	  }
	  set(c);
      }
  }

  std::string toString() override
  {
    return Integer::toString("%" PRINTF_INT64_MODIFIER "d");
  }
};


class RxBuffer : public Integer {
public:
  explicit RxBuffer(RCREG *_rcreg)
    : Integer("rx", 0, "USART Receive Register")
  {
  }
  void set(gint64 ) override
  {
    std::cout << "Receive buffer is read only\n";
  }
  std::string toString() override
  {
    return Integer::toString("%" PRINTF_INT64_MODIFIER "d");
  }

  void newByte(gint64 b)
  {
    Dprintf((" RxBuffer received a byte: 0x%02x=%d=%c", (int)b, (int)b, (int)b));
    Integer::set(b);
  }
};


//--------------------------------------------------------------
void USARTModule::new_rx_edge(unsigned int bit)
{
  if (m_rcreg) {
    m_rcreg->new_rx_edge(bit ? true : false);
  }
}


//--------------------------------------------------------------
void USARTModule::newRxByte(unsigned int aByte)
{
  m_RxBuffer->newByte(aByte);

  if (m_loop->getVal()) {
    SendByte(aByte);
  }
}


//--------------------------------------------------------------
#ifndef HAVE_TXFIFO


static unsigned int _tx_index = 0;
static unsigned char Test_Hello[] = {
  0x1b, 0xff, 0x87, 0x05, 'H', 'E',  'L', 'L', 'O', 0x17, 0x55
};


bool USARTModule::mGetTxByte(unsigned int &aByte)
{
  if (_tx_index > sizeof(Test_Hello)) {
    return false;
  }

  aByte = Test_Hello[_tx_index++];
  return true;
}


#else


bool USARTModule::mGetTxByte(unsigned int &aByte)
{
  if (m_FifoHead == m_FifoTail) {
    return false;
  }

  aByte = m_TxFIFO[m_FifoTail];

  if (m_FifoTail < m_FifoLen - 1) {
    m_FifoTail++;

  } else {
    m_FifoTail = 0;
  }

  return true;
}


#endif

//--------------------------------------------------------------
// create_iopin_map
//
//  This is where the information for the Module's package is defined.
// Specifically, the I/O pins of the module are created.

#define USART_PKG_TXPIN        1
#define USART_PKG_RXPIN        2
#define USART_PKG_CTSPIN       3
#define USART_PKG_RTXPIN       4

void USARTModule::create_iopin_map()
{
  // Define the physical package.
  //   The Package class, which is a parent of all of the modules,
  //   is responsible for allocating memory for the I/O pins.
  //
  //   USART I/O pins:
  //
  //    1 - Tx - Transmit
  //    2 - Rx - Receive
  //    3 - CTS - Clear To Send
  //    4 - RTS - Request To Send
  create_pkg(4);
  // Define the I/O pins and assign them to the package.
  //   There are two things happening here. First, there is
  //   a new I/O pin that is being created.The second thing is
  //   that the pins are "assigned" to the package. If we
  //   need to reference these newly created I/O pins (like
  //   below) then we can call the member function 'get_pin'.
  txpin = new USART_TXPIN(this, "TXPIN");
  rxpin = new USART_RXPIN(this, "RXPIN");
  cts = new USART_IO(this, 2, "CTS");
  rts = new USART_IO(this, 3, "RTS");
  addSymbol(rxpin);
  addSymbol(txpin);
  addSymbol(cts);
  addSymbol(rts);
  assign_pin(1, txpin);
  assign_pin(2, rxpin);
  assign_pin(3, cts);
  assign_pin(4, rts);
  // Complete the usart initialization
  m_txreg->txpin = txpin;
  m_txreg->usart = this; // Point back to the module
  m_rcreg->rxpin = rxpin;
}


//--------------------------------------------------------------
void USARTModule::get(char * , int )
{
  std::cout << "USARTModule::get(char *cP, int len)\n";
}


//--------------------------------------------------------------

Module * USARTModule::USART_construct(const char *_new_name)
{
  Dprintf(("USART construct\n"));
  USARTModule *um = new USARTModule((_new_name ? _new_name : "USART"));
  um->create_iopin_map();
  return um;
}


USARTModule::USARTModule(const char *_name) : Module(_name, "USART - Universal Synchronous Asynchronous Receiver Transmitter ")
{
#ifdef HAVE_TXFIFO
  m_TxFIFO = new unsigned char[64];
  m_FifoLen = 64;
  m_FifoHead = m_FifoTail = 0;
#endif
  txpin = 0;
  rxpin = 0;
  cts = 0;
  rts = 0;
  m_rcreg = new RCREG(this);
  m_txreg = new TXREG;
  m_RxBaud = new RxBaudRateAttribute(m_rcreg);
  addSymbol(m_RxBaud);
  m_TxBaud = new TxBaudRateAttribute(m_txreg);
  addSymbol(m_TxBaud);
  m_RxBuffer = new RxBuffer(m_rcreg);
  addSymbol(m_RxBuffer);
  m_TxBuffer = new TxBuffer(this);
  addSymbol(m_TxBuffer);
  m_CRLF = new Boolean("crlf", true, "if true, carriage return and linefeeds generate new lines in the terminal");
  addSymbol(m_CRLF);
  m_ShowHex = new Boolean("hex", false, "if true, display received data in hex - i.e. assume binary");
  addSymbol(m_ShowHex);
  m_loop = new Boolean("loop", false, "if true, received characters looped back to transmit");
  addSymbol(m_loop);
  m_console = new Boolean("console", false, "if true, display received character to the terminal window");
  addSymbol(m_console);
  CreateGraphics();
  assert(m_rcreg);
  assert(m_txreg);
  assert(m_RxBaud);
  assert(m_TxBaud);
  assert(m_RxBuffer);
  assert(m_TxBuffer);
}


USARTModule::~USARTModule()
{
#ifdef HAVE_GUI

  if (window) {
    gtk_widget_destroy(window);
  }

#endif
#ifdef HAVE_TXFIFO
  delete [] m_TxFIFO;
#endif
  removeSymbol(m_RxBaud);
  removeSymbol(m_TxBaud);
  removeSymbol(m_RxBuffer);
  removeSymbol(m_TxBuffer);
  removeSymbol(m_CRLF);
  removeSymbol(m_ShowHex);
  removeSymbol(m_loop);
  removeSymbol(m_console);
  removeSymbol(txpin);
  removeSymbol(rxpin);
  removeSymbol(cts);
  removeSymbol(rts);
  delete m_rcreg;
  delete m_txreg;
  delete m_RxBaud;
  delete m_TxBaud;
  delete m_RxBuffer;
  delete m_TxBuffer;
  delete m_CRLF;
  delete m_ShowHex;
  delete m_loop;
  delete m_console;
  /*
      delete txpin;
      delete rxpin;
      delete cts;
      delete rts;
  */
}


//--------------------------------------------------------------
void USARTModule::SendByte(unsigned tx_byte)
{
#ifdef HAVE_TXFIFO
  Dprintf(("SendByte <%02X> : head=%d, tail=%d, txreg=%p\n",
           tx_byte, m_FifoHead, m_FifoTail, m_txreg))

  if (m_FifoHead != m_FifoTail || !m_txreg || !m_txreg->is_empty()) {
    int newHead;
    m_TxFIFO[m_FifoHead] = tx_byte;
    newHead = m_FifoHead + 1;

    if (newHead >= m_FifoLen) {
      newHead = 0;
    }

    if (newHead == m_FifoTail) {
      int newLen = m_FifoLen + 32;
      unsigned char * newFIFO;
      newFIFO = new unsigned char[newLen];
      int oldTail = m_FifoTail;
      int dIdx = 0;
      int sIdx;

      for (sIdx = oldTail; sIdx < m_FifoLen;) {
        newFIFO[dIdx++] = m_TxFIFO[sIdx++];
      }

      for (sIdx = 0; sIdx < newHead;) {
        newFIFO[dIdx++] = m_TxFIFO[sIdx++];
      }

      unsigned char * oldFIFO = m_TxFIFO;
      m_TxFIFO = newFIFO;
      m_FifoTail -= oldTail;
      m_FifoHead = dIdx;
      m_FifoLen = newLen;
      delete oldFIFO;

    } else {
      m_FifoHead = newHead;
    }

    //cout << "Byte added to queue\n";

  } else
#endif
    if (m_txreg) {
      m_txreg->mSendByte(tx_byte);
    }
}


#ifdef HAVE_GUI

static bool ctl = false;        // true when ctrl key is down

static gint key_press(GtkWidget *widget, GdkEventKey *key, gpointer data)
{
  unsigned int c = key->keyval;
  g_signal_stop_emission_by_name(widget, "key_press_event");

  if (c == 0xffe3 || c == 0xffe4) { // key is left or right ctrl
    ctl = true;
    return 1;
  }

  if (ctl && c < 0xff00) { // build control character
    Dprintf(("CTL 0x%02x\n", c));
    c &= 0x1f;
  }

  if (c < 0xff20) {       // send character to usart
    c &= 0xff;
    ((USARTModule *)data)->USARTModule::SendByte(c);
    Dprintf(("Send %c 0x%x\n", c, c));

  } else {
    Dprintf(("0x%02x\n", c));
  }

  return 1;
}


static gint key_release(GtkWidget * , GdkEventKey *key, gpointer )
{
  unsigned int c = key->keyval;

  if (c == 0xffe3 || c == 0xffe4) { // Capture release of ctrl key
    ctl = false;
  }

  return 1;
}

#endif //HAVE_GUI

// Display character from usart on GUI text window
void USARTModule::show_tx(unsigned int data)
{
  data &= 0xff;
  bool IsAscii = true;
#ifdef HAVE_GUI
  bool Skip = (m_NewLine && data == '\n');
  m_NewLine = false;
#endif //HAVE_GUI

  if (m_ShowHex->getVal()) {
    IsAscii = false;

  } else if ((isascii(data) && isprint(data))) {
    IsAscii = true;

  } else if (m_CRLF->getVal() && ('\n' == data || '\r' == data)) {
#ifdef HAVE_GUI
    if (data == '\r') m_NewLine = true;
#endif //HAVE_GUI
    IsAscii = true;

  } else {
    IsAscii = false;
  }

  if (m_console->getVal()) {
    if (IsAscii) {
      putchar(data);

    } else {
      printf("<%02X>", data);
    }
  }

#ifdef HAVE_GUI

  if (!Skip && get_interface().bUsingGUI()) {
    GtkTextBuffer *buff = gtk_text_view_get_buffer(GTK_TEXT_VIEW(text));
    GtkTextIter iter;
    GtkTextMark *insert_mark;
    gtk_text_buffer_get_end_iter(buff, &iter);

    if (IsAscii) {
      char ch = data;
      gtk_text_buffer_insert(buff, &iter, &ch, 1);

    } else {
      char hex[5];
      snprintf(hex, sizeof(hex), "<%02X>", data);
      gtk_text_buffer_insert(buff, &iter, hex, 4);
    }

    /* get end iter again */
    gtk_text_buffer_get_end_iter(buff, &iter);
    /* get the current ( cursor )mark name */
    insert_mark = gtk_text_buffer_get_insert(buff);
    /* move mark and selection bound to the end */
    gtk_text_buffer_place_cursor(buff, &iter);
    /* scroll to the end view */
    gtk_text_view_scroll_to_mark(GTK_TEXT_VIEW(text),
                                 insert_mark, 0.0, TRUE, 0.0, 1.0);
  }

#endif //HAVE_GUI

}


// Create a GUI text window
void USARTModule::CreateGraphics()
{
#ifdef HAVE_GUI

  if (get_interface().bUsingGUI()) {
    window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
    gtk_window_set_title(GTK_WINDOW(window), "USART");
    gtk_window_set_default_size(GTK_WINDOW(window), 300, 100);
    GtkWidget *pSW = gtk_scrolled_window_new(0, 0);
    gtk_container_add(GTK_CONTAINER(window), pSW);
    gtk_scrolled_window_set_policy(GTK_SCROLLED_WINDOW(pSW),
                                   GTK_POLICY_AUTOMATIC,
                                   GTK_POLICY_AUTOMATIC);
    text = gtk_text_view_new();
    gtk_text_view_set_editable(GTK_TEXT_VIEW(text), TRUE);
    gtk_container_add(GTK_CONTAINER(pSW), text);
    /* Change default font throughout the widget */
    PangoFontDescription *font_desc;
    font_desc = pango_font_description_from_string("Courier 10");
    gtk_widget_modify_font(text, font_desc);
    pango_font_description_free(font_desc);
    gtk_widget_add_events(window, GDK_KEY_RELEASE_MASK);
    g_signal_connect(text, "key_press_event",
                     G_CALLBACK(key_press),
                     this);
    g_signal_connect(text, "key_release_event",
                     G_CALLBACK(key_release),
                     this);
    g_signal_connect(window, "destroy",
                     G_CALLBACK(gtk_widget_destroy), window);
    gtk_widget_show_all(window);

  } else {
    window = nullptr;
    text = nullptr;
  }

#endif  // HAVE_GUI
}