1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
package tim.prune.function.estimate.jama;
/**
* QR Decomposition.
*
* For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
* orthogonal matrix Q and an n-by-n upper triangular matrix R so that A = Q*R.
*
* The QR decomposition always exists, even if the matrix does not have full
* rank, so the constructor will never fail. The primary use of the QR
* decomposition is in the least squares solution of nonsquare systems of
* simultaneous linear equations. This will fail if isFullRank() returns false.
*
* Original authors The MathWorks, Inc. and the National Institute of Standards and Technology
* The original public domain code has now been modified and reduced,
* and is placed under GPL2 with the rest of the GpsPrune code.
*/
public class QRDecomposition
{
/** Array for internal storage of decomposition */
private double[][] _QR;
/** Row and column dimensions */
private int _m, _n;
/** Array for internal storage of diagonal of R */
private double[] _Rdiag;
/**
* QR Decomposition, computed by Householder reflections.
*
* @param inA Rectangular matrix
* @return Structure to access R and the Householder vectors and compute Q.
*/
public QRDecomposition(Matrix inA)
{
// Initialize.
_QR = inA.getArrayCopy();
_m = inA.getNumRows();
_n = inA.getNumColumns();
_Rdiag = new double[_n];
// Main loop.
for (int k = 0; k < _n; k++)
{
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for (int i = k; i < _m; i++) {
nrm = Maths.pythag(nrm, _QR[i][k]);
}
if (nrm != 0.0)
{
// Form k-th Householder vector.
if (_QR[k][k] < 0) {
nrm = -nrm;
}
for (int i = k; i < _m; i++) {
_QR[i][k] /= nrm;
}
_QR[k][k] += 1.0;
// Apply transformation to remaining columns.
for (int j = k + 1; j < _n; j++)
{
double s = 0.0;
for (int i = k; i < _m; i++) {
s += _QR[i][k] * _QR[i][j];
}
s = -s / _QR[k][k];
for (int i = k; i < _m; i++) {
_QR[i][j] += s * _QR[i][k];
}
}
}
_Rdiag[k] = -nrm;
}
}
/*
* ------------------------ Public Methods ------------------------
*/
/**
* Is the matrix full rank?
* @return true if R, and hence A, has full rank.
*/
public boolean isFullRank()
{
for (int j = 0; j < _n; j++) {
if (_Rdiag[j] == 0)
return false;
}
return true;
}
/**
* Return the Householder vectors
* @deprecated
* @return Lower trapezoidal matrix whose columns define the reflections
*/
private Matrix getH()
{
Matrix X = new Matrix(_m, _n);
double[][] H = X.getArray();
for (int i = 0; i < _m; i++) {
for (int j = 0; j < _n; j++) {
if (i >= j) {
H[i][j] = _QR[i][j];
} else {
H[i][j] = 0.0;
}
}
}
return X;
}
/**
* Return the upper triangular factor
* @deprecated
* @return R
*/
private Matrix getR()
{
Matrix X = new Matrix(_n, _n);
double[][] R = X.getArray();
for (int i = 0; i < _n; i++) {
for (int j = 0; j < _n; j++) {
if (i < j) {
R[i][j] = _QR[i][j];
} else if (i == j) {
R[i][j] = _Rdiag[i];
} else {
R[i][j] = 0.0;
}
}
}
return X;
}
/**
* Generate and return the (economy-sized) orthogonal factor
* @deprecated
* @return Q
*/
private Matrix getQ()
{
Matrix X = new Matrix(_m, _n);
double[][] Q = X.getArray();
for (int k = _n - 1; k >= 0; k--) {
for (int i = 0; i < _m; i++) {
Q[i][k] = 0.0;
}
Q[k][k] = 1.0;
for (int j = k; j < _n; j++) {
if (_QR[k][k] != 0) {
double s = 0.0;
for (int i = k; i < _m; i++) {
s += _QR[i][k] * Q[i][j];
}
s = -s / _QR[k][k];
for (int i = k; i < _m; i++) {
Q[i][j] += s * _QR[i][k];
}
}
}
}
return X;
}
/**
* Least squares solution of A*X = B
* @param B A Matrix with as many rows as A and any number of columns
* @return X that minimizes the two norm of Q*R*X-B
* @exception IllegalArgumentException if matrix dimensions don't agree
* @exception RuntimeException if Matrix is rank deficient.
*/
public Matrix solve(Matrix B)
{
if (B.getNumRows() != _m) {
throw new IllegalArgumentException("Matrix row dimensions must agree.");
}
if (!isFullRank()) {
throw new RuntimeException("Matrix is rank deficient.");
}
// Copy right hand side
int nx = B.getNumColumns();
double[][] X = B.getArrayCopy();
// Compute Y = transpose(Q)*B
for (int k = 0; k < _n; k++) {
for (int j = 0; j < nx; j++) {
double s = 0.0;
for (int i = k; i < _m; i++) {
s += _QR[i][k] * X[i][j];
}
s = -s / _QR[k][k];
for (int i = k; i < _m; i++) {
X[i][j] += s * _QR[i][k];
}
}
}
// Solve R*X = Y;
for (int k = _n - 1; k >= 0; k--) {
for (int j = 0; j < nx; j++) {
X[k][j] /= _Rdiag[k];
}
for (int i = 0; i < k; i++) {
for (int j = 0; j < nx; j++) {
X[i][j] -= X[k][j] * _QR[i][k];
}
}
}
return (new Matrix(X, _n, nx).getMatrix(0, _n - 1, 0, nx - 1));
}
}
|