File: linear_solver.cc

package info (click to toggle)
gpsshogi 0.7.0-3.3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 111,280 kB
  • sloc: cpp: 80,962; perl: 12,610; ruby: 3,929; javascript: 1,631; makefile: 1,202; sh: 473; tcl: 166; ansic: 67
file content (299 lines) | stat: -rw-r--r-- 8,618 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/* linear_solver.cc
 */
#include "gpsshogi/stat/weightRecorder.h"
#include "osl/stat/iterativeLinearSolver.h"
#include "osl/stat/sparseRegressionMultiplier.h"
#include "osl/stat/twoDimensionalStatistics.h"
#include "osl/stat/diagonalPreconditioner.h"
#include <boost/program_options.hpp>
#include <valarray>
#include <sstream>
#include <stdexcept>
#include <iostream>

namespace po = boost::program_options;

// compute w s.t. x'x w = x'y  (least squares)
// x and y are given from stdin.
// program reads instances repeatedly, and
// an instance is a line of y_i x_i.
// x_i consists of (index value) pairs of its non-zero elements.

// e.g.
// x         w     y
// 8 3 4     1     26
// 1 5 9  *  2  =  38
// 6 7 2     3     26
// 0 1 1            5

/*
% ./linear_solver -f 3 -e 4
# repeatedly type the following lines
26  0 8  1 3  2 4
38  0 1  1 5  2 9
26  0 6  1 7  2 2
 5  1 1  2 1
% cat w.txt
1 2 3
*/

void solve(size_t num_features, size_t num_instances, size_t skip_head,
	   double lambda, size_t max_loop,
	   const char *output_filename, const char *tmp_filename);
bool binary_mode = false;

int main(int argc, char *argv[])
{
  size_t num_features = 0;
  size_t num_elements = 0;
  size_t skip_head = 0;
  std::string output_filename;
  std::string tmp_filename;
  double lambda = 0.0;
  size_t loop;

  po::options_description options;
  options.add_options()
    ("num-features,f", po::value<size_t>(&num_features)->default_value(0),
     "number of features")
    ("num-elements,e", po::value<size_t>(&num_elements)->default_value(0),
     "number of elements")
    ("skip-head,s", po::value<size_t>(&skip_head)->default_value(0),
     "number of elements separated for cross validation")
    ("lambda,L", po::value<double>(&lambda)->default_value(0.0),
     "regularization term")
    ("loop,l", po::value<size_t>(&loop)->default_value(10),
     "maximum number of iterations")
    ("output-filename,o", 
     po::value<std::string>(&output_filename)->default_value("w.txt"),
     "filename for weights")
    ("tmp-filename,t", 
     po::value<std::string>(&tmp_filename)->default_value("tmp-w.txt"),
     "filename for interim weights")
    ("binary,b", "binary input from stdin")
    ("help,h", "produce this message");
    ;
  po::variables_map vm;
  try {
    po::store(po::parse_command_line(argc, argv, options), vm);
    po::notify(vm);
  }
  catch (std::exception& e)
  {
    std::cerr << "error in parsing options" << std::endl
	      << e.what() << std::endl;
    std::cerr << options << std::endl;
    return 1;
  }
  if (vm.count("help") || num_features == 0 || num_elements == 0) {
    std::cerr << options << std::endl;
    return 0;
  }
  binary_mode = vm.count("binary");
  solve(num_features, num_elements, skip_head, lambda, loop,
	output_filename.c_str(), tmp_filename.c_str());
}

using gpsshogi::stat::WeightRecorder;
class StreamMultiplier : public osl::stat::SparseRegressionMultiplier
{
  size_t m_num_instances;
  size_t m_skip_head;
  mutable size_t iteration;
  const double *weights;
  WeightRecorder recorder;
  mutable double next_y;		// state dependent
  mutable size_t cur_instance;	// state dependent
  mutable double initial_error;
public:
  StreamMultiplier(size_t num_features, size_t num_instances,
		   size_t skip_head, double lambda,
		   const double *w, const char *tmp_out)
    : SparseRegressionMultiplier(num_features, lambda),
      m_num_instances(num_instances), m_skip_head(skip_head),
      iteration(0), weights(w), recorder(tmp_out),
      next_y(0.0), cur_instance(0), initial_error(-1.0)
  {
    assert(m_skip_head*2 <= m_num_instances);
    assert(num_features <= m_num_instances);
  }
  ~StreamMultiplier();

  bool getVectorX(unsigned int& num_elements,
		  unsigned int *non_zero_indices, 
		  double *non_zero_values) const;
  void newIteration() const;
  void computeXtY(double *xty, double *diag_inv);

  static double dotProduct(const unsigned int a_non_zeros, 
			   const unsigned int *a_indices, 
			   const double *a_values,
			   const double *b)
  {
    double result = 0.0;
    for (size_t i=0; i<a_non_zeros; ++i)
    {
      result += a_values[i]*b[a_indices[i]];
    }
    return result;
  }
};

StreamMultiplier::~StreamMultiplier()
{
}

void StreamMultiplier::computeXtY(double *xty, double *diag_inv)
{
  // SparseRegressionMultiplier::computeXtY  y.read()  getVectorX 
  // θ˸ƤФ뤳Ȥ˰¸
  assert(cur_instance == 0);
  if (m_skip_head) {
    boost::scoped_array<unsigned int> indices_dummy(new unsigned int[dim()]);
    boost::scoped_array<double> values_dummy(new double[dim()]);
    unsigned int num_elements_dummy;
    while (cur_instance < m_skip_head) {
#ifndef NDEBUG
      const bool go_next = 
#endif
	getVectorX(num_elements_dummy, &indices_dummy[0], &values_dummy[0]);
      assert(go_next);
    }
  }
    
  osl::stat::DoubleReferenceReader y(next_y);
  SparseRegressionMultiplier::computeXtY(y, xty, diag_inv);
}

int readInt(std::istream& is) 
{
  const size_t buf_size = 1024 * 2; // PIPE_SIZE/2 if portable
  static boost::scoped_array<char> buf(new char[buf_size]);
  static size_t cur = buf_size;
  if (cur == buf_size) {
    is.read(buf.get(), buf_size);
    cur = 0;
  }

  int32_t value = *reinterpret_cast<int32_t*>(&buf[cur]);
  cur += sizeof(int32_t);
  return value;
}

bool StreamMultiplier::getVectorX(unsigned int& num_elements,
				  unsigned int *non_zero_indices, 
				  double *non_zero_values) const
{
  // file binary ɤˡۤ
  num_elements = 0;
  if (binary_mode) {
    next_y = readInt(std::cin);
    num_elements = readInt(std::cin);
    for (size_t i=0; i<num_elements; ++i) {
      non_zero_indices[i] = readInt(std::cin);
      non_zero_values[i] = readInt(std::cin);
    }
  }
  else {
    std::string line;
    if (! std::getline(std::cin, line))
      throw std::runtime_error("read_error");
    std::istringstream is(line);
    is >> next_y;
  
    int index;
    int value;
    while (is >> index >> value) {
      non_zero_indices[num_elements] = index;
      non_zero_values[num_elements] = value;
      ++num_elements;
    }
  }
  ++cur_instance;
  if (cur_instance >= m_num_instances)
    cur_instance = 0;
  return cur_instance;
}

void StreamMultiplier::newIteration() const
{
  assert(cur_instance == 0);
  recorder.write(iteration++, dim(), weights);

  if (m_skip_head == 0)
    return;

  osl::stat::TwoDimensionalStatistics stat;
  boost::scoped_array<unsigned int> indices(new unsigned int[dim()]);
  boost::scoped_array<double> values(new double[dim()]);

  while (cur_instance < m_skip_head)
  {
    unsigned int non_zeros;
#ifndef NDEBUG
    const bool go_next = 
#endif
      getVectorX(non_zeros, &indices[0], &values[0]);
    assert(go_next);
    const double prediction 
      = dotProduct(non_zeros, &indices[0], &values[0], weights);
    stat.addInstance(prediction, next_y);
  }

  const double mse = stat.meanSquaredErrorsAdjustConstant();
  std::cerr << "At " << iteration << " iteration\n";
  std::cerr << "Cross Validation: " << sqrt(mse) << "\n" << std::flush;
  if (iteration == 1)
    initial_error = mse;
  else if (mse > initial_error) {
    throw std::runtime_error("convergence failed");
  }
}

void solve(size_t num_features, size_t num_instances, size_t skip_head,
	   double lambda, size_t max_loop,
	   const char *output_filename, const char *tmp_filename)
{
  const double eps = 0.001;
  std::valarray<double> result(0.0, num_features);
  int iter;
  double tol;

  StreamMultiplier prod_A(num_features, num_instances, skip_head, lambda,
			  &result[0], tmp_filename);
  std::valarray<double> b(num_features);
  std::valarray<double> diag_inv(num_features);
  std::cerr << "computing x^t y\n";
  prod_A.computeXtY(&b[0], &diag_inv[0]);
  osl::stat::DiagonalPreconditioner preconditioner(num_features);
  preconditioner.setInverseDiagonals(&diag_inv[0]);
  std::cerr << "preconditioner\n";

  osl::stat::IterativeLinearSolver solver(prod_A, &preconditioner, max_loop, eps);
  std::cerr << "solver started ";
  int err = 0;

  std::cerr << "using cg\n";
  try {
    err = solver.solve_by_CG(b, result, &iter, &tol);
  }
  catch (std::runtime_error& e) {
    std::cerr << e.what() << std::endl;
    err = 1;
  }
  if (err) {
    std::cerr << "solver failed " << err << std::endl;
    return;
  }

  WeightRecorder::write(output_filename, num_features, &result[0]);  
  std::cerr << "success" << std::endl;
  if (skip_head)
    prod_A.newIteration();
}

/* ------------------------------------------------------------------------- */
// ;;; Local Variables:
// ;;; mode:c++
// ;;; c-basic-offset:2
// ;;; End: