1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
/* featureSet.cc
*/
#include "featureSet.h"
#include "feature.h"
#include "osl/csa.h"
#include "osl/eval/see.h"
#include "osl/eval/pieceEval.h"
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/min.hpp>
#include <boost/accumulators/statistics/max.hpp>
#include <boost/format.hpp>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <cstdio>
gpsshogi::
FeatureSet::FeatureSet()
{
}
gpsshogi::
FeatureSet::~FeatureSet()
{
}
void gpsshogi::
FeatureSet::pushBack(Feature *f, bool light)
{
features.push_back(f);
if (light)
light_features.push_back(features.size()-1);
}
void gpsshogi::
FeatureSet::addFinished()
{
offsets.resize(features.size()+1);
offsets[0] = 0;
for (size_t i=0; i<features.size(); ++i)
offsets[i+1] = offsets[i] + features[i].dimension();
}
gpsshogi::weight_t gpsshogi::FeatureSet::
match(const StateInfo& state, Move move, index_list_t& out,
const valarray_t& weights) const
{
MoveInfo info(state, move);
assert(offsets.size() == features.size()+1);
out.clear();
#ifndef NDEBUG
size_t prev = 0;
#endif
for (size_t i=0; i<features.size(); ++i) {
features[i].match(state, info, offsets[i], out);
#ifndef NDEBUG
for (size_t j=prev; j<out.size(); ++j) {
assert(offsets[i] <= out[j].first);
assert(out[j].first < offsets[i+1]);
}
prev = out.size();
#endif
}
return accumulate(out, weights);
}
gpsshogi::weight_t gpsshogi::FeatureSet::
matchExp(const StateInfo& state, Move move, index_list_t& out,
const valarray_t& weights) const
{
return exp(match(state, move, out, weights));
}
gpsshogi::weight_t gpsshogi::FeatureSet::
matchLight(const StateInfo& state, Move move, index_list_t& out,
const valarray_t& weights) const
{
MoveInfo info(state, move);
assert(offsets.size() == features.size()+1);
out.clear();
for (size_t i: light_features) {
features[i].match(state, info, offsets[i], out);
}
return accumulate(out, weights);
}
void gpsshogi::FeatureSet::
analyze(const StateInfo& state, Move move, const valarray_t& weights) const
{
MoveInfo info(state, move);
index_list_t matched;
std::cerr << csa::show(move) << "\n";
std::vector<std::pair<double, std::string> > out;
for (size_t i=0; i<features.size(); ++i) {
matched.clear();
features[i].match(state, info, offsets[i], matched);
if (! matched.empty())
out.push_back(make_pair(accumulateExp(matched, weights),
features[i].name()));
}
std::sort(out.begin(), out.end());
std::reverse(out.begin(), out.end());
for (size_t i=0; i<out.size(); ++i) {
std::cerr << boost::format("%16s %6.2f ") % out[i].second % out[i].first;
if (i % 3 == 2)
std::cerr << "\n";
}
if (out.size() % 3 != 0)
std::cerr << "\n";
}
gpsshogi::weight_t gpsshogi::FeatureSet::
accumulate(const index_list_t& features, const valarray_t& weights)
{
weight_t sum = 0.0;
for (const index_list_t::value_type& p: features) {
assert(p.first < weights.size());
sum += weights[p.first] * p.second;
}
assert(sum == 0.0 || std::isnormal(sum));
return sum;
}
gpsshogi::weight_t gpsshogi::FeatureSet::
accumulateExp(const index_list_t& features, const valarray_t& weights)
{
return exp(accumulate(features, weights));
}
gpsshogi::weight_t gpsshogi::FeatureSet::
generateRating(const StateInfo& state, WeightedMoveVector& out,
const valarray_t& weights) const
{
MoveVector moves;
state.state.generateLegal(moves);
weight_t sum = 0.0;
for (Move move: moves) {
index_list_t dummy;
weight_t score = match(state, move, dummy, weights);
out.push_back(WeightedMove(score, move));
sum += exp(score);
}
return sum;
}
void gpsshogi::FeatureSet::
ratingToLogProb(const WeightedMoveVector& rating,
weight_t sum,
MoveLogProbVector& out)
{
static const double scale = 100.0 / log(0.5);
for (WeightedMove move: rating) {
weight_t p = exp(move.first)/sum;
if (std::isnan(p) || p <= 1.0/(1<<12))
p = 1.0/(1<<12);
const int logp = std::max(50, static_cast<int>(log(p)*scale));
out.push_back(MoveLogProb(move.second, logp));
}
out.sortByProbability();
}
void gpsshogi::FeatureSet::
generateLogProb(const StateInfo& state, MoveLogProbVector& out,
const valarray_t& weights) const
{
WeightedMoveVector moves;
weight_t sum = generateRating(state, moves, weights);
ratingToLogProb(moves, sum, out);
}
int gpsshogi::FeatureSet::
logLikelihood(const StateInfo& state,
Move move, const valarray_t& weights) const
{
MoveLogProbVector moves;
generateLogProb(state, moves, weights);
const MoveLogProb *p = moves.find(move);
if (!p)
return 1200;
return p->logProb();
}
void gpsshogi::FeatureSet::
save(const char *base_filename, const valarray_t& weights) const
{
assert(weights.size() == dimension());
std::string info_filename = std::string(base_filename) + "-info.txt";
{
std::ofstream os(info_filename.c_str());
os << "#* all\n";
for (const Feature& f: features)
os << f.name() << ' ' << f.dimension() << "\n";
}
std::string filename = std::string(base_filename) + ".txt";
{
FILE *fp = fopen(filename.c_str(), "w");
if (! fp)
return;
for (size_t i=0; i<weights.size(); ++i)
fprintf(fp, "%.8f\n", weights[i]);
fclose(fp);
}
}
bool gpsshogi::FeatureSet::
load(const char *base_filename, valarray_t& weights) const
{
std::string filename = std::string(base_filename) + ".txt";
weights.resize(dimension());
weights = 0.0;
std::ifstream is(filename.c_str());
for (size_t i=0; i<dimension(); ++i) {
is >> weights[i];
if (! is) {
std::cerr << "load failed at " << i << " in " << dimension() << "\n";
break;
}
}
return static_cast<bool>(is);
}
void gpsshogi::FeatureSet::
showSummary(const valarray_t& weights) const
{
assert(weights.size() == dimension());
for (size_t i=0; i<features.size(); ++i) {
const Feature& f = features[i];
using namespace boost::accumulators;
accumulator_set<weight_t, stats<tag::mean, tag::min, tag::max> > acc;
int zero = 0;
for (size_t j=offsets[i]; j<offsets[i+1]; ++j)
if (weights[j])
acc(weights[j]);
else
++zero;
std::cerr << std::setw(16) << f.name()
<< " dim " << std::setw(5) << f.dimension() - zero
<< "/" << std::setw(5) << f.dimension()
<< " min " << std::setw(6) << min(acc)
<< " max " << std::setw(6) << max(acc)
<< " mean " << std::setw(6) << mean(acc)
<< "\n";
}
}
gpsshogi::StandardFeatureSet::
StandardFeatureSet()
{
pushBack(new TakeBackFeature, 1);
pushBack(new CheckFeature, 1);
pushBack(new SeeFeature, 1);
pushBack(new ContinueCapture, 1);
pushBack(new DropCaptured);
pushBack(new SquareY, 1);
pushBack(new SquareX, 1);
pushBack(new KingRelativeY, 1);
pushBack(new KingRelativeX, 1);
pushBack(new FromEffect, 1);
pushBack(new ToEffect, 1);
pushBack(new FromEffectLong, 1);
pushBack(new ToEffectLong, 1);
pushBack(new Pattern(0,-1)); // U
pushBack(new Pattern(1,-1)); // UL
pushBack(new Pattern(1,0)); // L
pushBack(new Pattern(0,1)); // D
pushBack(new Pattern(1,1)); // DL
pushBack(new Pattern(1,-2)); // UUL
pushBack(new Pattern(0,-2)); // UU
pushBack(new Pattern(0,2)); // DD
pushBack(new Pattern(2,0)); // LL
pushBack(new Pattern(1,2)); // DDL
pushBack(new MoveFromOpposingSliders);
pushBack(new AttackToOpposingSliders);
pushBack(new PawnAttack);
pushBack(new CapturePtype, 1);
pushBack(new BlockLong);
pushBack(new BlockLongFrom);
pushBack(new LanceAttack);
pushBack(new BishopAttack);
pushBack(new RookAttack);
pushBack(new BreakThreatmate);
pushBack(new SendOff);
pushBack(new CheckmateIfCapture);
pushBack(new OpposingPawn);
pushBack(new DropAfterOpposingPawn);
pushBack(new LongRecapture);
pushBack(new SacrificeAttack);
pushBack(new AddEffectLong);
pushBack(new King5x5Ptype);
pushBack(new KingBlockade);
pushBack(new CoverFork);
pushBack(new ThreatmateByCapture);
pushBack(new LureDefender);
pushBack(new CoverPawn);
pushBack(new PromotionBySacrifice);
pushBack(new EscapeThreatened);
pushBack(new BookMove);
addFinished();
}
void gpsshogi::PredictionModelLight::
save(const char *filename, const valarray_t& weights)
{
assert(weights.size() == dimension());
FILE *fp = fopen(filename, "w");
if (! fp)
return;
for (size_t i=0; i<weights.size(); ++i)
fprintf(fp, "%.8f\n", weights[i]);
fclose(fp);
}
bool gpsshogi::PredictionModelLight::
load(const char *filename, valarray_t& weights)
{
weights.resize(dimension());
weights = 0.0;
std::ifstream is(filename);
for (size_t i=0; i<dimension(); ++i) {
is >> weights[i];
if (! is) {
std::cerr << "load failed at " << i << " in " << dimension() << "\n";
break;
}
}
return static_cast<bool>(is);
}
gpsshogi::weight_t gpsshogi::PredictionModelLight::
addGradientTakeBack(int progress8, Move next, Move target, double sum, const valarray_t& weights,
valarray_t& partial)
{
return addGradient(next, target, sum, weights, partial, progress8*4 + 0);
}
gpsshogi::weight_t gpsshogi::PredictionModelLight::
addGradientSeePlus(const StateInfo& info, Move next, Move target, double sum, const valarray_t& weights,
valarray_t& partial)
{
const int progress8 = info.progress8();
return addGradient(next, target, sum, weights, partial, progress8*4 + 2);
}
gpsshogi::weight_t gpsshogi::PredictionModelLight::
addGradient(Move next, Move target, double sum, const valarray_t& weights,
valarray_t& partial, int offset)
{
// p = a * r + b
assert(partial.size() == dimension());
assert(weights.size() == dimension());
valarray_t x(dimension());
x = 0.0;
x[0+offset] = sum;
x[1+offset] = 1.0;
weight_t f = (x*weights).sum();
weight_t p = 1/(1.0+exp(-f));
if (target == next) {
for (size_t j=0; j<x.size(); ++j) {
assert(j < partial.size());
partial[j] += x[j]*p*(1-p);
assert(! isnan(partial[j]));
}
} else {
for (size_t j=0; j<x.size(); ++j) {
assert(j < partial.size());
partial[j] -= x[j]*p*(1-p);
assert(! isnan(partial[j]));
}
}
return std::max(p, 1.0/(1<<12));
}
int gpsshogi::PredictionModelLight::
logProbTakeBack(const StateInfo& info, double sum, const valarray_t& w)
{
return predict(info.progress8()*4 + 0, sum, w);
}
int gpsshogi::PredictionModelLight::
logProbSeePlus(const StateInfo& info, double sum, const valarray_t& w)
{
return predict(info.progress8()*4 + 2, sum, w);
}
int gpsshogi::PredictionModelLight::
predict(int offset, double sum, const valarray_t& w)
{
static const double scale = 100.0 / log(0.5);
double x = w[offset] * sum + w[offset+1], p = 1/(1.0+exp(-x));
return std::max(50, static_cast<int>(log(p)*scale));
}
// ;;; Local Variables:
// ;;; mode:c++
// ;;; c-basic-offset:2
// ;;; End:
|