1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* -*- c++ -*- */
/*
* Copyright 2004 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "magnitude_equalizer_vcc_impl.h"
namespace gr {
namespace dab {
magnitude_equalizer_vcc::sptr
magnitude_equalizer_vcc::make(unsigned int vlen, unsigned int num_symbols)
{
return gnuradio::get_initial_sptr
(new magnitude_equalizer_vcc_impl(vlen, num_symbols));
}
magnitude_equalizer_vcc_impl::magnitude_equalizer_vcc_impl(unsigned int vlen, unsigned int num_symbols)
: gr::sync_block("magnitude_equalizer_vcc",
gr::io_signature::make (1, 1, sizeof(gr_complex)*vlen),
gr::io_signature::make (1, 1, sizeof(gr_complex)*vlen)),
d_vlen(vlen), d_num_symbols(num_symbols)
{
assert(d_num_symbols>0);
d_equalizer = new float[vlen];
for (unsigned int i=0;i<vlen;i++)
d_equalizer[i] = 1;
set_history(d_num_symbols);
set_tag_propagation_policy(TPP_DONT); // We need to handle the tag propagation "manually"
// because of set_history(d_num_symbols)
d_add_item_tag_at = -1;
}
magnitude_equalizer_vcc_impl::~magnitude_equalizer_vcc_impl(void)
{
delete [] d_equalizer;
}
void magnitude_equalizer_vcc_impl::update_equalizer(const gr_complex *in)
{
for (unsigned int i=0; i<d_vlen; i++)
d_equalizer[i] = std::abs(in[i]);
if (d_num_symbols>1) {
for (unsigned int i=1; i<d_num_symbols; i++) {
in += d_vlen;
for (unsigned int j=0; j<d_vlen; j++)
d_equalizer[j] += std::abs(in[j]);
}
}
for (unsigned int i=0; i<d_vlen; i++)
d_equalizer[i] = (float)d_num_symbols/d_equalizer[i];
// for (unsigned int i=0; i<d_vlen; i++)
// printf("%e, ", d_equalizer[i]);
// printf(" <-- equalizer\n");
}
int
magnitude_equalizer_vcc_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
gr_complex const *in = (const gr_complex *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];
std::vector<int> tag_positions;
int next_tag_position = -1;
int next_tag_position_index = -1;
// If there were not enough samples to be produced in the previous call to work(..),
// we need to add tags in the following call:
if (d_add_item_tag_at >= 0) {
if (d_add_item_tag_at < noutput_items) {
add_item_tag(0, nitems_written(0) + d_add_item_tag_at, pmt::intern("first"), pmt::intern(""), pmt::intern("magnitude_equalizer"));
d_add_item_tag_at = -1;
}
else {
d_add_item_tag_at = d_add_item_tag_at - noutput_items;
}
}
//
// Get all stream tags with key "first", and make a vector of the positions.
std::vector<tag_t> tags;
get_tags_in_range(tags, 0, nitems_read(0), nitems_read(0) + noutput_items, pmt::mp("first"));
for(int i=0;i<tags.size();i++) {
int current;
current = tags[i].offset - nitems_read(0);
tag_positions.push_back(current);
next_tag_position_index = 0;
}
if(next_tag_position_index >= 0) {
next_tag_position = tag_positions[next_tag_position_index];
}
for(int i=0; i<noutput_items; i++){
if (next_tag_position == i) { /* there was a trigger signal d_num_symbols-1 symbols before -> update equalizer */
// Action when stream tags is found:
update_equalizer(in);
if ((i + d_num_symbols-1) < noutput_items)
add_item_tag(0, nitems_written(0) + i+d_num_symbols-1, pmt::intern("first"), pmt::intern(""), pmt::intern("magnitude_equalizer"));
else {
d_add_item_tag_at = (i + d_num_symbols -1) - noutput_items;
}
//
next_tag_position_index++;
if (next_tag_position_index == tag_positions.size()) {
next_tag_position_index = -1;
next_tag_position = -1;
}
else {
next_tag_position = tag_positions[next_tag_position_index];
}
}
for (unsigned int j=0;j<d_vlen;j++)
out[j] = in[j]*d_equalizer[j];
in += d_vlen;
out += d_vlen;
}
return noutput_items;
}
}
}
|