1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/* -*- c++ -*- */
/*
* Copyright 2004 Free Software Foundation, Inc.
*
* This file is part of GNU Radio
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <dab_ofdm_ffs_sample.h>
#include <gr_io_signature.h>
/*
* Create a new instance of dab_ofdm_ffs_sample and return
* a boost shared_ptr. This is effectively the public constructor.
*/
dab_ofdm_ffs_sample_sptr
dab_make_ofdm_ffs_sample (unsigned int symbol_length, unsigned int fft_length, unsigned int num_symbols, float alpha, unsigned int sample_rate)
{
return gnuradio::get_initial_sptr (new dab_ofdm_ffs_sample (symbol_length, fft_length, num_symbols, alpha, sample_rate));
}
dab_ofdm_ffs_sample::dab_ofdm_ffs_sample (unsigned int symbol_length, unsigned int fft_length, unsigned int num_symbols, float alpha, unsigned int sample_rate) :
gr_sync_block ("ofdm_ffs_sample",
gr_make_io_signature2 (2, 2, sizeof(float), sizeof(char)),
gr_make_io_signature (1, 1, sizeof(float))),
d_symbol_length(symbol_length), d_fft_length(fft_length), d_num_symbols(num_symbols), d_alpha(alpha), d_sample_rate(sample_rate), d_cur_symbol(num_symbols), d_cur_sample(0), d_ffs_error_sum(0), d_estimated_error(0), d_estimated_error_per_sample(0)
{
}
int
dab_ofdm_ffs_sample::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const float *iptr = (const float *) input_items[0];
const char *trigger = (const char *) input_items[1];
float *optr = (float *) output_items[0];
float new_estimate;
for (int i=0; i<noutput_items; i++) {
if (*trigger++ == 1) { /* new frame starts */
d_cur_symbol = 0;
d_cur_sample = 0;
d_ffs_error_sum = 0;
}
d_cur_sample++;
if (d_cur_sample==d_symbol_length) { /* new symbol starts */
d_cur_sample = 0;
if (d_cur_symbol<d_num_symbols) {
new_estimate = *iptr;
if (d_cur_symbol>0) {
if (d_ffs_error_sum < 0 && new_estimate > 0 && new_estimate - d_ffs_error_sum/d_cur_symbol > M_PI)
new_estimate -= 2*M_PI;
else if (d_ffs_error_sum > 0 && new_estimate < 0 && d_ffs_error_sum/d_cur_symbol - new_estimate > M_PI)
new_estimate += 2*M_PI;
}
d_ffs_error_sum += new_estimate;
}
if (d_cur_symbol == d_num_symbols-1) { /* update estimated error */
d_ffs_error_sum /= d_num_symbols; /* average */
/* if the offset is close to half of the subcarrier bandwidth, it may
* jump from some large positive value to some large negative value.
* with averaging, this is a problem - we have to detect it (although
* it really only makes a difference when the offset is very close to
* half the subcarrier bandwidth)
* note: if there is an offset of one subcarrier bandwidth, the phase
* offset in fft_length samples is 2pi */
if (d_estimated_error < 0 && d_ffs_error_sum > 0 && d_ffs_error_sum - d_estimated_error > M_PI) {
fprintf(stderr, "ofdm_ffs_sample: switch detected: neg -> pos\n");
d_estimated_error += 2*M_PI;
} else if (d_estimated_error > 0 && d_ffs_error_sum < 0 && d_estimated_error - d_ffs_error_sum > M_PI) {
fprintf(stderr, "ofdm_ffs_sample: switch detected: pos -> neg\n");
d_estimated_error -= 2*M_PI;
}
/* the following distinction is not really needed; but without it,
* simulation would need to run much longer, becuase the
* synchronisation would need time to adjust to the offset */
if (d_estimated_error == 0)
d_estimated_error = d_ffs_error_sum; /* first time -> fast adjustment */
else
d_estimated_error = d_alpha*d_ffs_error_sum + (1-d_alpha)*d_estimated_error; /* slow adjustment */
d_estimated_error_per_sample = d_estimated_error / (float)d_fft_length;
// fprintf(stderr, "ofdm_ffs_sample: d_estimated_error: %f (%3.2f Hz)\n", d_estimated_error, d_estimated_error_per_sample*d_sample_rate/(2*M_PI));
}
d_cur_symbol++;
}
*optr++ = d_estimated_error_per_sample;
iptr++;
}
return noutput_items;
}
|