File: mp2_decode_bs_impl.cc

package info (click to toggle)
gr-dab 0.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,272 kB
  • sloc: python: 14,976; cpp: 6,738; ansic: 547; makefile: 19; sh: 11
file content (690 lines) | stat: -rw-r--r-- 28,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/* -*- c++ -*- */

/*
* 2017 by Moritz Luca Schmid, Communications Engineering Lab (CEL) / Karlsruhe Institute of Technology (KIT).
* A major part of this code is adapted from the kjmp2 library, slightly modified and written into a GNURadio block.
* Note that this is an altered version of kjmp2 and not the original library.
*/

/******************************************************************************
** kjmp2 -- a minimal MPEG-1/2 Audio Layer II decoder library                **
** version 1.1                                                               **
*******************************************************************************
** Copyright (C) 2006-2013 Martin J. Fiedler <martin.fiedler@gmx.net>        **
**                                                                           **
** This software is provided 'as-is', without any express or implied         **
** warranty. In no event will the authors be held liable for any damages     **
** arising from the use of this software.                                    **
**                                                                           **
** Permission is granted to anyone to use this software for any purpose,     **
** including commercial applications, and to alter it and redistribute it    **
** freely, subject to the following restrictions:                            **
**   1. The origin of this software must not be misrepresented; you must not **
**      claim that you wrote the original software. If you use this software **
**      in a product, an acknowledgment in the product documentation would   **
**      be appreciated but is not required.                                  **
**   2. Altered source versions must be plainly marked as such, and must not **
**      be misrepresented as being the original software.                    **
**   3. This notice may not be removed or altered from any source            **
**      distribution.                                                        **
******************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdexcept>
#include <stdio.h>
#include <sstream>
#include <boost/format.hpp>
#include <gnuradio/io_signature.h>
#include "mp2_decode_bs_impl.h"

using namespace boost;

namespace gr {
  namespace dab {

// channel mode constants
#define STEREO       0
#define JOINT_STEREO 1
#define DUAL_CHANNEL 2
#define MONO         3

// sample rate table
    static
    const unsigned short sample_rates[8] = {
            44100, 48000, 32000, 0,  // MPEG-1
            22050, 24000, 16000, 0   // MPEG-2
    };

// bitrate table
    static
    const short bitrates[28] = {
            32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384,  // MPEG-1
            8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160   // MPEG-2
    };

// scale factor base values (24-bit fixed-point)
    static
    const int scf_base[3] = {0x02000000, 0x01965FEA, 0x01428A30};

// synthesis window
    static
    const int D[512] = {
            0x00000, 0x00000, 0x00000, 0x00000, 0x00000, 0x00000, 0x00000, -0x00001,
            -0x00001, -0x00001, -0x00001, -0x00002, -0x00002, -0x00003, -0x00003, -0x00004,
            -0x00004, -0x00005, -0x00006, -0x00006, -0x00007, -0x00008, -0x00009, -0x0000A,
            -0x0000C, -0x0000D, -0x0000F, -0x00010, -0x00012, -0x00014, -0x00017, -0x00019,
            -0x0001C, -0x0001E, -0x00022, -0x00025, -0x00028, -0x0002C, -0x00030, -0x00034,
            -0x00039, -0x0003E, -0x00043, -0x00048, -0x0004E, -0x00054, -0x0005A, -0x00060,
            -0x00067, -0x0006E, -0x00074, -0x0007C, -0x00083, -0x0008A, -0x00092, -0x00099,
            -0x000A0, -0x000A8, -0x000AF, -0x000B6, -0x000BD, -0x000C3, -0x000C9, -0x000CF,
            0x000D5, 0x000DA, 0x000DE, 0x000E1, 0x000E3, 0x000E4, 0x000E4, 0x000E3,
            0x000E0, 0x000DD, 0x000D7, 0x000D0, 0x000C8, 0x000BD, 0x000B1, 0x000A3,
            0x00092, 0x0007F, 0x0006A, 0x00053, 0x00039, 0x0001D, -0x00001, -0x00023,
            -0x00047, -0x0006E, -0x00098, -0x000C4, -0x000F3, -0x00125, -0x0015A, -0x00190,
            -0x001CA, -0x00206, -0x00244, -0x00284, -0x002C6, -0x0030A, -0x0034F, -0x00396,
            -0x003DE, -0x00427, -0x00470, -0x004B9, -0x00502, -0x0054B, -0x00593, -0x005D9,
            -0x0061E, -0x00661, -0x006A1, -0x006DE, -0x00718, -0x0074D, -0x0077E, -0x007A9,
            -0x007D0, -0x007EF, -0x00808, -0x0081A, -0x00824, -0x00826, -0x0081F, -0x0080E,
            0x007F5, 0x007D0, 0x007A0, 0x00765, 0x0071E, 0x006CB, 0x0066C, 0x005FF,
            0x00586, 0x00500, 0x0046B, 0x003CA, 0x0031A, 0x0025D, 0x00192, 0x000B9,
            -0x0002C, -0x0011F, -0x00220, -0x0032D, -0x00446, -0x0056B, -0x0069B, -0x007D5,
            -0x00919, -0x00A66, -0x00BBB, -0x00D16, -0x00E78, -0x00FDE, -0x01148, -0x012B3,
            -0x01420, -0x0158C, -0x016F6, -0x0185C, -0x019BC, -0x01B16, -0x01C66, -0x01DAC,
            -0x01EE5, -0x02010, -0x0212A, -0x02232, -0x02325, -0x02402, -0x024C7, -0x02570,
            -0x025FE, -0x0266D, -0x026BB, -0x026E6, -0x026ED, -0x026CE, -0x02686, -0x02615,
            -0x02577, -0x024AC, -0x023B2, -0x02287, -0x0212B, -0x01F9B, -0x01DD7, -0x01BDD,
            0x019AE, 0x01747, 0x014A8, 0x011D1, 0x00EC0, 0x00B77, 0x007F5, 0x0043A,
            0x00046, -0x003E5, -0x00849, -0x00CE3, -0x011B4, -0x016B9, -0x01BF1, -0x0215B,
            -0x026F6, -0x02CBE, -0x032B3, -0x038D3, -0x03F1A, -0x04586, -0x04C15, -0x052C4,
            -0x05990, -0x06075, -0x06771, -0x06E80, -0x0759F, -0x07CCA, -0x083FE, -0x08B37,
            -0x09270, -0x099A7, -0x0A0D7, -0x0A7FD, -0x0AF14, -0x0B618, -0x0BD05, -0x0C3D8,
            -0x0CA8C, -0x0D11D, -0x0D789, -0x0DDC9, -0x0E3DC, -0x0E9BD, -0x0EF68, -0x0F4DB,
            -0x0FA12, -0x0FF09, -0x103BD, -0x1082C, -0x10C53, -0x1102E, -0x113BD, -0x116FB,
            -0x119E8, -0x11C82, -0x11EC6, -0x120B3, -0x12248, -0x12385, -0x12467, -0x124EF,
            0x1251E, 0x124F0, 0x12468, 0x12386, 0x12249, 0x120B4, 0x11EC7, 0x11C83,
            0x119E9, 0x116FC, 0x113BE, 0x1102F, 0x10C54, 0x1082D, 0x103BE, 0x0FF0A,
            0x0FA13, 0x0F4DC, 0x0EF69, 0x0E9BE, 0x0E3DD, 0x0DDCA, 0x0D78A, 0x0D11E,
            0x0CA8D, 0x0C3D9, 0x0BD06, 0x0B619, 0x0AF15, 0x0A7FE, 0x0A0D8, 0x099A8,
            0x09271, 0x08B38, 0x083FF, 0x07CCB, 0x075A0, 0x06E81, 0x06772, 0x06076,
            0x05991, 0x052C5, 0x04C16, 0x04587, 0x03F1B, 0x038D4, 0x032B4, 0x02CBF,
            0x026F7, 0x0215C, 0x01BF2, 0x016BA, 0x011B5, 0x00CE4, 0x0084A, 0x003E6,
            -0x00045, -0x00439, -0x007F4, -0x00B76, -0x00EBF, -0x011D0, -0x014A7, -0x01746,
            0x019AE, 0x01BDE, 0x01DD8, 0x01F9C, 0x0212C, 0x02288, 0x023B3, 0x024AD,
            0x02578, 0x02616, 0x02687, 0x026CF, 0x026EE, 0x026E7, 0x026BC, 0x0266E,
            0x025FF, 0x02571, 0x024C8, 0x02403, 0x02326, 0x02233, 0x0212B, 0x02011,
            0x01EE6, 0x01DAD, 0x01C67, 0x01B17, 0x019BD, 0x0185D, 0x016F7, 0x0158D,
            0x01421, 0x012B4, 0x01149, 0x00FDF, 0x00E79, 0x00D17, 0x00BBC, 0x00A67,
            0x0091A, 0x007D6, 0x0069C, 0x0056C, 0x00447, 0x0032E, 0x00221, 0x00120,
            0x0002D, -0x000B8, -0x00191, -0x0025C, -0x00319, -0x003C9, -0x0046A, -0x004FF,
            -0x00585, -0x005FE, -0x0066B, -0x006CA, -0x0071D, -0x00764, -0x0079F, -0x007CF,
            0x007F5, 0x0080F, 0x00820, 0x00827, 0x00825, 0x0081B, 0x00809, 0x007F0,
            0x007D1, 0x007AA, 0x0077F, 0x0074E, 0x00719, 0x006DF, 0x006A2, 0x00662,
            0x0061F, 0x005DA, 0x00594, 0x0054C, 0x00503, 0x004BA, 0x00471, 0x00428,
            0x003DF, 0x00397, 0x00350, 0x0030B, 0x002C7, 0x00285, 0x00245, 0x00207,
            0x001CB, 0x00191, 0x0015B, 0x00126, 0x000F4, 0x000C5, 0x00099, 0x0006F,
            0x00048, 0x00024, 0x00002, -0x0001C, -0x00038, -0x00052, -0x00069, -0x0007E,
            -0x00091, -0x000A2, -0x000B0, -0x000BC, -0x000C7, -0x000CF, -0x000D6, -0x000DC,
            -0x000DF, -0x000E2, -0x000E3, -0x000E3, -0x000E2, -0x000E0, -0x000DD, -0x000D9,
            0x000D5, 0x000D0, 0x000CA, 0x000C4, 0x000BE, 0x000B7, 0x000B0, 0x000A9,
            0x000A1, 0x0009A, 0x00093, 0x0008B, 0x00084, 0x0007D, 0x00075, 0x0006F,
            0x00068, 0x00061, 0x0005B, 0x00055, 0x0004F, 0x00049, 0x00044, 0x0003F,
            0x0003A, 0x00035, 0x00031, 0x0002D, 0x00029, 0x00026, 0x00023, 0x0001F,
            0x0001D, 0x0001A, 0x00018, 0x00015, 0x00013, 0x00011, 0x00010, 0x0000E,
            0x0000D, 0x0000B, 0x0000A, 0x00009, 0x00008, 0x00007, 0x00007, 0x00006,
            0x00005, 0x00005, 0x00004, 0x00004, 0x00003, 0x00003, 0x00002, 0x00002,
            0x00002, 0x00002, 0x00001, 0x00001, 0x00001, 0x00001, 0x00001, 0x00001
    };

///////////// Table 3-B.2: Possible quantization per subband ///////////////////

// quantizer lookup, step 1: bitrate classes
    static uint8_t quant_lut_step1[2][16] = {
            // 32, 48, 56, 64, 80, 96,112,128,160,192,224,256,320,384 <- bitrate
            {0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2},  // mono
            // 16, 24, 28, 32, 40, 48, 56, 64, 80, 96,112,128,160,192 <- BR / chan
            {0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2}   // stereo
    };

// quantizer lookup, step 2: bitrate class, sample rate -> B2 table idx, sblimit
#define QUANT_TAB_A (27 | 64)   // Table 3-B.2a: high-rate, sblimit = 27
#define QUANT_TAB_B (30 | 64)   // Table 3-B.2b: high-rate, sblimit = 30
#define QUANT_TAB_C   8         // Table 3-B.2c:  low-rate, sblimit =  8
#define QUANT_TAB_D  12         // Table 3-B.2d:  low-rate, sblimit = 12

    static
    const char quant_lut_step2[3][4] = {
            //   44.1 kHz,      48 kHz,      32 kHz
            {QUANT_TAB_C, QUANT_TAB_C, QUANT_TAB_D},  // 32 - 48 kbit/sec/ch
            {QUANT_TAB_A, QUANT_TAB_A, QUANT_TAB_A},  // 56 - 80 kbit/sec/ch
            {QUANT_TAB_B, QUANT_TAB_A, QUANT_TAB_B},  // 96+     kbit/sec/ch
    };

// quantizer lookup, step 3: B2 table, subband -> nbal, row index
// (upper 4 bits: nbal, lower 4 bits: row index)
    static
    uint8_t quant_lut_step3[3][32] = {
            // low-rate table (3-B.2c and 3-B.2d)
            {0x44, 0x44, // SB  0 -  1
                         0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34 // SB  2 - 12
            },
            // high-rate table (3-B.2a and 3-B.2b)
            {0x43, 0x43, 0x43, // SB  0 -  2
                               0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, 0x42, // SB  3 - 10
                                                                               0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, // SB 11 - 22
                                                                                                                                                       0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20                           // SB 23 - 29
            },
            // MPEG-2 LSR table (B.2 in ISO 13818-3)
            {0x45, 0x45, 0x45, 0x45,                                         // SB  0 -  3
                                     0x34, 0x34, 0x34, 0x34, 0x34, 0x34, 0x34,                          // SB  4 - 10
                                                                               0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24,           // SB 11 -
                                                                                                                                           0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24, 0x24  //       - 29
            }
    };

// quantizer lookup, step 4: table row, allocation[] value -> quant table index
    static
    const char quant_lut_step4[6][16] = {
            {0, 1, 2, 17},
            {0, 1, 2, 3, 4, 5, 6, 17},
            {0, 1, 2, 3, 4, 5, 6, 7, 8,  9,  10, 11, 12, 13, 14, 17},
            {0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17},
            {0, 1, 2, 4, 5, 6, 7, 8, 9,  10, 11, 12, 13, 14, 15, 17},
            {0, 1, 2, 3, 4, 5, 6, 7, 8,  9,  10, 11, 12, 13, 14, 15}
    };

// quantizer table
    static
    struct quantizer_spec quantizer_table[17] = {
            {3,     1, 5},  //  1
            {5,     1, 7},  //  2
            {7,     0, 3},  //  3
            {9,     1, 10},  //  4
            {15,    0, 4},  //  5
            {31,    0, 5},  //  6
            {63,    0, 6},  //  7
            {127,   0, 7},  //  8
            {255,   0, 8},  //  9
            {511,   0, 9},  // 10
            {1023,  0, 10},  // 11
            {2047,  0, 11},  // 12
            {4095,  0, 12},  // 13
            {8191,  0, 13},  // 14
            {16383, 0, 14},  // 15
            {32767, 0, 15},  // 16
            {65535, 0, 16}   // 17
    };


    mp2_decode_bs::sptr
    mp2_decode_bs::make(int bit_rate_n)
    {
      return gnuradio::get_initial_sptr
              (new mp2_decode_bs_impl(bit_rate_n));
    }

    /*
     * The private constructor
     */
    mp2_decode_bs_impl::mp2_decode_bs_impl(int bit_rate_n)
            : gr::block("mp2_decode_bs",
                        gr::io_signature::make(1, 1, sizeof(unsigned char)),
                        gr::io_signature::make(2, 2, sizeof(int16_t))), /* output is always stereo*/
              d_bit_rate_n(bit_rate_n)
    {
      d_bit_rate = d_bit_rate_n * 8;

      int16_t i, j;
      int16_t *nPtr = &d_N[0][0];

      // compute N[i][j]
      for (i = 0; i < 64; i++)
        for (j = 0; j < 32; ++j)
          *nPtr++ = (int16_t)(256.0 *
                              cos(((16 + i) * ((j << 1) + 1)) *
                                  0.0490873852123405));

      // perform local initialization:
      for (i = 0; i < 2; ++i)
        for (j = 1023; j >= 0; j--)
          d_V[i][j] = 0;

      d_V_offs = 0;
      d_baud_rate = 48000;  // default for DAB
      d_mp2_framesize = 24 * d_bit_rate;  // framesize in unpacked bits!!!
      d_mp2_frame = new uint8_t[2 * d_mp2_framesize];
      d_mp2_header_OK = 0;
      d_mp2_header_count = 0;
      d_mp2_bit_count = 0;
      d_number_of_frames = 0;
      d_error_frames = 0;
      d_output_size = KJMP2_SAMPLES_PER_FRAME;
      d_first = true;

      set_output_multiple(d_output_size);
      d_logger->debug("mp2 decoder initialized");
    }

    /*
     * Our virtual destructor.
     */
    mp2_decode_bs_impl::~mp2_decode_bs_impl()
    {
      delete[] d_mp2_frame;
    }

#define  valid(x)  ((x == 48000) || (x == 24000))

    void mp2_decode_bs_impl::set_samplerate(int32_t rate)
    {
      if (d_baud_rate == rate)
        return;
      if (!valid (rate))
        return;
      // ourSink -> setMode (0, rate);
      d_baud_rate = rate;
    }

    int32_t mp2_decode_bs_impl::mp2_samplerate(uint8_t *frame)
    {
      if (!frame)
        return 0;
      if ((frame[0] != 0xFF)   // no valid syncword?
          || ((frame[1] & 0xF6) != 0xF4)   // no MPEG-1/2 Audio Layer II?
          || ((frame[2] - 0x10) >= 0xE0))  // invalid bitrate?
        return 0;
      d_sample_rate = sample_rates[(((frame[1] & 0x08) >> 1) ^ 4)  // MPEG-1/2 switch
                          + ((frame[2] >> 2) & 3)];         // actual rate
      return d_sample_rate;
    }

    struct quantizer_spec *mp2_decode_bs_impl::read_allocation(int sb, int b2_table)
    {
      int table_idx = quant_lut_step3[b2_table][sb];
      table_idx = quant_lut_step4[table_idx & 15][get_bits(table_idx >> 4)];
      return table_idx ? (&quantizer_table[table_idx - 1]) : 0;
    }

    void mp2_decode_bs_impl::read_samples(struct quantizer_spec *q,
                                          int scalefactor, int *sample)
    {
      int idx, adj, scale;
      register int val;

      if (!q) {
        // no bits allocated for this subband
        sample[0] = sample[1] = sample[2] = 0;
        return;
      }

      // resolve scalefactor
      if (scalefactor == 63) {
        scalefactor = 0;
      } else {
        adj = scalefactor / 3;
        scalefactor = (scf_base[scalefactor % 3] + ((1 << adj) >> 1)) >> adj;
      }

      // decode samples
      adj = q->nlevels;
      if (q->grouping) { // decode grouped samples
        val = get_bits(q->cw_bits);
        sample[0] = val % adj;
        val /= adj;
        sample[1] = val % adj;
        sample[2] = val / adj;
      } else { // decode direct samples
        for (idx = 0; idx < 3; ++idx)
          sample[idx] = get_bits(q->cw_bits);
      }

      // postmultiply samples
      scale = 65536 / (adj + 1);
      adj = ((adj + 1) >> 1) - 1;
      for (idx = 0; idx < 3; ++idx) {
        // step 1: renormalization to [-1..1]
        val = (adj - sample[idx]) * scale;
        // step 2: apply scalefactor
        sample[idx] = (val * (scalefactor >> 12)                  // upper part
                       + ((val * (scalefactor & 4095) + 2048) >> 12)) // lower part
                >> 12;  // scale adjust
      }
    }

#define show_bits(bit_count) (bit_window >> (24 - (bit_count)))

    int32_t mp2_decode_bs_impl::get_bits(int32_t bit_count)
    {
      //int32_t result = show_bits (bit_count);
      int32_t result = bit_window >> (24 - bit_count);

      bit_window = (bit_window << bit_count) & 0xFFFFFF;
      bits_in_window -= bit_count;
      while (bits_in_window < 16) {
        bit_window |= (*d_frame_pos++) << (16 - bits_in_window);
        bits_in_window += 8;
      }
      return result;
    }

////////////////////////////////////////////////////////////////////////////////
// FRAME DECODE FUNCTION                                                      //
////////////////////////////////////////////////////////////////////////////////

    int32_t mp2_decode_bs_impl::mp2_decode_frame(uint8_t *frame, int16_t *pcm)
    {
      uint32_t bit_rate_index_minus1;
      uint32_t sampling_frequency;
      uint32_t padding_bit;
      uint32_t mode;
      uint32_t frame_size;
      int32_t bound, sblimit;
      int32_t sb, ch, gr, part, idx, nch, i, j, sum;
      int32_t table_idx;

      d_number_of_frames++;
      if (d_number_of_frames >= 25) {
        //show_frameErrors (errorFrames);
        d_number_of_frames = 0;
        d_error_frames = 0;
      }

// check for valid header: syncword OK, MPEG-Audio Layer 2
      if ((frame[0] != 0xFF)   // no valid syncword?
          || ((frame[1] & 0xF6) != 0xF4)   // no MPEG-1/2 Audio Layer II?
          || ((frame[2] - 0x10) >= 0xE0)) { // invalid bitrate?
        d_error_frames++;
        return 0;
      }

      // set up the bitstream reader
      bit_window = frame[2] << 16;
      bits_in_window = 8;
      d_frame_pos = &frame[3];

      // read the rest of the header
      bit_rate_index_minus1 = get_bits(4) - 1;
      if (bit_rate_index_minus1 > 13) {
        d_logger->debug("invalid bit rate or unknown format");
        return 0;  // invalid bit rate or 'free format'
      }

      sampling_frequency = get_bits(2);
      if (sampling_frequency == 3)
        return 0;

      if ((frame[1] & 0x08) == 0) {  // MPEG-2
        sampling_frequency += 4;
        bit_rate_index_minus1 += 14;
      }

      padding_bit = get_bits(1);
      get_bits(1);  // discard private_bit
      mode = get_bits(2);

// parse the mode_extension, set up the stereo bound
      if (mode == JOINT_STEREO)
        bound = (get_bits(2) + 1) << 2;
      else {
        get_bits(2);
        bound = (mode == MONO) ? 0 : 32;
      }

// discard the last 4 bits of the header and the CRC value, if present
      get_bits(4);
      if ((frame[1] & 1) == 0)
        get_bits(16);

// compute the frame size
      frame_size = (144000 * bitrates[bit_rate_index_minus1]
                    / sample_rates[sampling_frequency]) + padding_bit;
      d_logger->debug("frame_size = {}",frame_size);

      if (!pcm) {
        d_logger->error("pcm is NULL ptr - no decoding");
        return frame_size;  // no decoding
      }

// prepare the quantizer table lookups
      if (sampling_frequency & 4) {
        // MPEG-2 (LSR)
        table_idx = 2;
        sblimit = 30;
      } else {
        // MPEG-1
        table_idx = (mode == MONO) ? 0 : 1;
        table_idx = quant_lut_step1[table_idx][bit_rate_index_minus1];
        table_idx = quant_lut_step2[table_idx][sampling_frequency];
        sblimit = table_idx & 63;
        table_idx >>= 6;
      }

      if (bound > sblimit)
        bound = sblimit;

      // read the allocation information
      for (sb = 0; sb < bound; ++sb)
        for (ch = 0; ch < 2; ++ch)
          d_allocation[ch][sb] = read_allocation(sb, table_idx);

      for (sb = bound; sb < sblimit; ++sb)
        d_allocation[0][sb] =
        d_allocation[1][sb] = read_allocation(sb, table_idx);

      // read scale factor selector information
      nch = (mode == MONO) ? 1 : 2;
      for (sb = 0; sb < sblimit; ++sb) {
        for (ch = 0; ch < nch; ++ch)
          if (d_allocation[ch][sb])
            d_scfsi[ch][sb] = get_bits(2);

        if (mode == MONO)
          d_scfsi[1][sb] = d_scfsi[0][sb];
      }

      // read scale factors
      for (sb = 0; sb < sblimit; ++sb) {
        for (ch = 0; ch < nch; ++ch) {
          if (d_allocation[ch][sb]) {
            switch (d_scfsi[ch][sb]) {
              case 0:
                d_scalefactor[ch][sb][0] = get_bits(6);
                d_scalefactor[ch][sb][1] = get_bits(6);
                d_scalefactor[ch][sb][2] = get_bits(6);
                break;
              case 1:
                d_scalefactor[ch][sb][0] =
                d_scalefactor[ch][sb][1] = get_bits(6);
                d_scalefactor[ch][sb][2] = get_bits(6);
                break;
              case 2:
                d_scalefactor[ch][sb][0] =
                d_scalefactor[ch][sb][1] =
                d_scalefactor[ch][sb][2] = get_bits(6);
                break;
              case 3:
                d_scalefactor[ch][sb][0] = get_bits(6);
                d_scalefactor[ch][sb][1] =
                d_scalefactor[ch][sb][2] = get_bits(6);
                break;
            }
          }
        }
        if (mode == MONO)
          for (part = 0; part < 3; ++part)
            d_scalefactor[1][sb][part] = d_scalefactor[0][sb][part];
      }

// coefficient input and reconstruction
      for (part = 0; part < 3; ++part) {
        for (gr = 0; gr < 4; ++gr) {
// read the samples
          for (sb = 0; sb < bound; ++sb)
            for (ch = 0; ch < 2; ++ch)
              read_samples(d_allocation[ch][sb],
                           d_scalefactor[ch][sb][part],
                           &d_sample[ch][sb][0]);
          for (sb = bound; sb < sblimit; ++sb) {
            read_samples(d_allocation[0][sb],
                         d_scalefactor[0][sb][part],
                         &d_sample[0][sb][0]);
            for (idx = 0; idx < 3; ++idx)
              d_sample[1][sb][idx] = d_sample[0][sb][idx];
          }

          for (ch = 0; ch < 2; ++ch)
            for (sb = sblimit; sb < 32; ++sb)
              for (idx = 0; idx < 3; ++idx)
                d_sample[ch][sb][idx] = 0;

// synthesis loop
          for (idx = 0; idx < 3; ++idx) {
// shifting step
            d_V_offs = table_idx = (d_V_offs - 64) & 1023;

            for (ch = 0; ch < 2; ++ch) {
// matrixing
              for (i = 0; i < 64; ++i) {
                sum = 0;
                for (j = 0; j < 32; ++j) // 8b*15b=23b
                  sum += d_N[i][j] * d_sample[ch][j][idx];
// intermediate value is 28 bit (23 + 5), clamp to 14b
//
                d_V[ch][table_idx + i] = (sum + 8192) >> 14;
              }

// construction of U
              for (i = 0; i < 8; ++i)
                for (j = 0; j < 32; ++j) {
                  d_U[(i << 6) + j]
                          = d_V[ch][(table_idx + (i << 7) + j) & 1023];
                  d_U[(i << 6) + j + 32] =
                          d_V[ch][(table_idx + (i << 7) + j + 96) & 1023];
                }

// apply window
              for (i = 0; i < 512; ++i)
                d_U[i] = (d_U[i] * D[i] + 32) >> 6;

// output samples
              for (j = 0; j < 32; ++j) {
                sum = 0;
                for (i = 0; i < 16; ++i)
                  sum -= d_U[(i << 5) + j];
                sum = (sum + 8) >> 4;
                if (sum < -32768)
                  sum = -32768;
                if (sum > 32767)
                  sum = 32767;
                pcm[(idx << 6) | (j << 1) | ch] = (uint16_t) sum;
              }
            } // end of synthesis channel loop
          } // end of synthesis sub-block loop
// adjust PCM output pointer: decoded 3 * 32 = 96 stereo samples
          pcm += 192;
        } // decoding of the granule finished
      }
      return frame_size;
    }

    void mp2_decode_bs_impl::add_bit_to_mp2(uint8_t *v, uint8_t b, int16_t nm)
    {
      uint8_t byte = v[nm / 8];
      int16_t bitnr = 7 - (nm & 7);
      uint8_t newbyte = (01 << bitnr);

      if (b == 0)
        byte &= ~newbyte;
      else
        byte |= newbyte;
      v[nm / 8] = byte;
    }

    void
    mp2_decode_bs_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
    {
      ninput_items_required[0] = noutput_items / d_output_size * d_mp2_framesize;
    }

    int
    mp2_decode_bs_impl::general_work(int noutput_items,
                                     gr_vector_int &ninput_items,
                                     gr_vector_const_void_star &input_items,
                                     gr_vector_void_star &output_items)
    {
      const unsigned char *in = (const unsigned char *) input_items[0]; // input are unpacked bytes
      int16_t *out_left = (int16_t *) output_items[0];
      int16_t *out_right = (int16_t *) output_items[1];
      d_nproduced = 0;

      if (d_first) {
        add_item_tag(0, nitems_written(0), pmt::mp("audio_start"), pmt::PMT_NIL);
        d_first = false;
      }

      for (int logical_frame_count; logical_frame_count < noutput_items / d_output_size; logical_frame_count++) {
        int16_t i, j;
        int16_t lf = d_baud_rate == 48000 ? d_mp2_framesize : 2 * d_mp2_framesize;
        uint8_t help[24 * d_bit_rate_n];
        int16_t vlength = 24 * d_bit_rate / 8;

        /* pad reading is not supported yet */

        for (i = 0; i < d_mp2_framesize; i++) {
          // decoder is in sync with MPEG frame
          if (d_mp2_header_OK == 2) {
            add_bit_to_mp2(d_mp2_frame, in[logical_frame_count * d_mp2_framesize + i], d_mp2_bit_count++);
            if (d_mp2_bit_count >= lf) {
              // prepare buffer for PCM stereo samples
              int16_t sample_buf[KJMP2_SAMPLES_PER_FRAME * 2];
              // decode mp2 frame and write it into buffer
              if (mp2_decode_frame(d_mp2_frame, sample_buf)) {
                // write successfully decoded data to output buffer
                for (int n = 0; n < KJMP2_SAMPLES_PER_FRAME; n++) {
                  out_left[d_nproduced + n] = sample_buf[n*2];
                  out_right[d_nproduced + n] = sample_buf[n*2+1];
                }
                d_nproduced += KJMP2_SAMPLES_PER_FRAME;
                d_logger->debug("mp2 decoding succeeded");
              } else {
                d_logger->debug("mp2 decoding failed");
              }
              d_mp2_header_OK = 0;
              d_mp2_header_count = 0;
              d_mp2_bit_count = 0;
            }
          } else if (d_mp2_header_OK == 0) {
//	apparently , we are not in sync yet
            if (in[logical_frame_count * d_mp2_framesize + i] == 01) {
              if (++d_mp2_header_count == 12) {
                d_mp2_bit_count = 0;
                for (j = 0; j < 12; j++)
                  add_bit_to_mp2(d_mp2_frame, 1, d_mp2_bit_count++);
                d_mp2_header_OK = 1;
              }
            }else {
              d_mp2_header_count = 0;
            }
          } else if (d_mp2_header_OK == 1) {
            add_bit_to_mp2(d_mp2_frame, in[logical_frame_count * d_mp2_framesize + i], d_mp2_bit_count++);
            if (d_mp2_bit_count == 24) {
              set_samplerate(mp2_samplerate(d_mp2_frame));
              d_mp2_header_OK = 2;
            }
          }
        }
      }

      // Tell runtime system how many input items we consumed on
      // each input stream.
      consume_each(noutput_items / d_output_size * d_mp2_framesize);

      // Tell runtime system how many output items we produced.
      return d_nproduced;
    }

  } /* namespace dab */
} /* namespace gr */