1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
#!/usr/bin/env python
#
# Copyright 2008 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
# the code in this file is partially adapted from ofdm.py from the gnuradio
# trunk (actually, only frequency synchronisation is done the same way, as that
# implementation otherwise is not suited for DAB)
#
# Andreas Mueller, 2008
# andrmuel@ee.ethz.ch
from gnuradio import gr, blocks, fft, filter, digital
import gnuradio.dab as grdab
from threading import Timer
from time import sleep
from math import pi
"""
modulator and demodulator for the DAB physical layer
"""
class ofdm_mod(gr.hier_block2):
"""
@brief Block to create a DAB signal from bits.
Takes a data stream and performs OFDM modulation according to the DAB standard.
The output sample rate is 2.048 MSPS.
"""
def __init__(self, dab_params, verbose=False, debug=False):
"""
Hierarchical block for OFDM modulation
@param dab_params DAB parameter object (grdab.parameters.dab_parameters)
@param debug enables debug output to files
"""
dp = dab_params
gr.hier_block2.__init__(self,"ofdm_mod",
gr.io_signature2(2, 2, gr.sizeof_char*dp.num_carriers/4, gr.sizeof_char), # input signature
gr.io_signature (1, 1, gr.sizeof_gr_complex)) # output signature
# symbol mapping
self.mapper_v2s = blocks.vector_to_stream(gr.sizeof_char, 384)
self.mapper_unpack = blocks.packed_to_unpacked_bb(1, gr.GR_MSB_FIRST)
self.mapper = grdab.mapper_bc(dp.num_carriers)
self.mapper_s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, 1536)
# add pilot symbol
self.insert_pilot = grdab.ofdm_insert_pilot_vcc(dp.prn)
# phase sum
self.sum_phase = grdab.sum_phasor_trig_vcc(dp.num_carriers)
# frequency interleaving
self.interleave = grdab.frequency_interleaver_vcc(dp.frequency_interleaving_sequence_array)
# add central carrier & move to middle
self.move_and_insert_carrier = grdab.ofdm_move_and_insert_zero(dp.fft_length, dp.num_carriers)
# ifft
self.ifft = fft.fft_vcc(dp.fft_length, False, [], True)
# cyclic prefixer
self.prefixer = digital.ofdm_cyclic_prefixer(dp.fft_length, dp.symbol_length)
# convert back to vectors
self.s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, dp.symbol_length)
# add null symbol
self.insert_null = grdab.insert_null_symbol(dp.ns_length, dp.symbol_length)
#
# connect it all
#
# data
self.connect((self,0), self.mapper_v2s, self.mapper_unpack, self.mapper, self.mapper_s2v, (self.insert_pilot,0), (self.sum_phase,0), self.interleave, self.move_and_insert_carrier, self.ifft, self.prefixer, self.s2v, (self.insert_null,0))
self.connect(self.insert_null, self)
# control signal (frame start)
self.connect((self,1), (self.insert_pilot,1), (self.sum_phase,1), (self.insert_null,1))
if debug:
#self.connect(self.mapper, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/generated_signal_mapper.dat"))
self.connect(self.insert_pilot, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/generated_signal_insert_pilot.dat"))
self.connect(self.sum_phase, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/generated_signal_sum_phase.dat"))
self.connect(self.interleave, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/generated_signal_interleave.dat"))
self.connect(self.move_and_insert_carrier, blocks.file_sink(gr.sizeof_gr_complex*dp.fft_length, "debug/generated_signal_move_and_insert_carrier.dat"))
self.connect(self.ifft, blocks.file_sink(gr.sizeof_gr_complex*dp.fft_length, "debug/generated_signal_ifft.dat"))
self.connect(self.prefixer, blocks.file_sink(gr.sizeof_gr_complex, "debug/generated_signal_prefixer.dat"))
self.connect(self.insert_null, blocks.file_sink(gr.sizeof_gr_complex, "debug/generated_signal.dat"))
class ofdm_demod(gr.hier_block2):
"""
@brief Block to demodulate a DAB signal into bits.
Takes a stream of complex baseband samples and performs OFDM demodulation according to the DAB standard.
Expects an input sample rate of 2.048 MSPS.
"""
def __init__(self, dab_params, rx_params, verbose=False, debug=False):
"""
Hierarchical block for OFDM demodulation
@param dab_params DAB parameter object (grdab.parameters.dab_parameters)
@param rx_params RX parameter object (grdab.parameters.receiver_parameters)
@param debug enables debug output to files
@param verbose whether to produce verbose messages
"""
self.dp = dp = dab_params
self.rp = rp = rx_params
self.verbose = verbose
if self.rp.softbits:
gr.hier_block2.__init__(self,"ofdm_demod",
gr.io_signature (1, 1, gr.sizeof_gr_complex), # input signature
gr.io_signature (1, 1, gr.sizeof_float*self.dp.num_carriers*2)) # output signature
else:
gr.hier_block2.__init__(self,"ofdm_demod",
gr.io_signature (1, 1, gr.sizeof_gr_complex), # input signature
gr.io_signature (1, 1, gr.sizeof_char*self.dp.num_carriers/4)) # output signature
# workaround for a problem that prevents connecting more than one block directly (see trac ticket #161)
#self.input = gr.kludge_copy(gr.sizeof_gr_complex)
self.input = blocks.multiply_const_cc(1.0) # FIXME
self.connect(self, self.input)
# input filtering
if self.rp.input_fft_filter:
if verbose: print("--> RX filter enabled")
lowpass_taps = filter.firdes.low_pass(1.0, # gain
dp.sample_rate, # sampling rate
rp.filt_bw, # cutoff frequency
rp.filt_tb, # width of transition band
fft.window.WIN_HAMMING) # Hamming window
self.fft_filter = filter.fft_filter_ccc(1, lowpass_taps)
# correct sample rate offset, if enabled
if self.rp.autocorrect_sample_rate:
if verbose: print("--> dynamic sample rate correction enabled")
self.rate_detect_ns = grdab.detect_null(dp.ns_length, False)
self.rate_estimator = grdab.estimate_sample_rate_bf(dp.sample_rate, dp.frame_length)
self.rate_prober = blocks.probe_signal_f()
self.connect(self.input, self.rate_detect_ns, self.rate_estimator, self.rate_prober)
# self.resample = gr.fractional_interpolator_cc(0, 1)
self.resample = grdab.fractional_interpolator_triggered_update_cc(0,1)
self.connect(self.rate_detect_ns, (self.resample,1))
self.updater = Timer(0.1,self.update_correction)
# self.updater = threading.Thread(target=self.update_correction)
self.run_interpolater_update_thread = True
self.updater.setDaemon(True)
self.updater.start()
else:
self.run_interpolater_update_thread = False
if self.rp.sample_rate_correction_factor != 1 or self.rp.always_include_resample:
if verbose: print("--> static sample rate correction enabled")
self.resample = filter.mmse_resampler_cc(0, self.rp.sample_rate_correction_factor)
# timing and fine frequency synchronisation
self.sync = grdab.ofdm_sync_dab2(self.dp, self.rp, debug)
# ofdm symbol sampler
self.sampler = grdab.ofdm_sampler(dp.fft_length, dp.cp_length, dp.symbols_per_frame, rp.cp_gap)
# fft for symbol vectors
self.fft = fft.fft_vcc(dp.fft_length, True, [], True)
# coarse frequency synchronisation
self.cfs = grdab.ofdm_coarse_frequency_correct(dp.fft_length, dp.num_carriers, dp.cp_length)
# diff phasor
self.phase_diff = grdab.diff_phasor_vcc(dp.num_carriers)
# remove pilot symbol
self.remove_pilot = grdab.ofdm_remove_first_symbol_vcc(dp.num_carriers)
# magnitude equalisation
if self.rp.equalize_magnitude:
if verbose: print("--> magnitude equalization enabled")
self.equalizer = grdab.magnitude_equalizer_vcc(dp.num_carriers, rp.symbols_for_magnitude_equalization)
# frequency deinterleaving
self.deinterleave = grdab.frequency_interleaver_vcc(dp.frequency_deinterleaving_sequence_array)
# symbol demapping
self.demapper = grdab.qpsk_demapper_vcb(dp.num_carriers)
#
# connect everything
#
if self.rp.autocorrect_sample_rate or self.rp.sample_rate_correction_factor != 1 or self.rp.always_include_resample:
self.connect(self.input, self.resample)
self.input2 = self.resample
else:
self.input2 = self.input
if self.rp.input_fft_filter:
self.connect(self.input2, self.fft_filter, self.sync)
else:
self.connect(self.input2, self.sync)
# data stream
self.connect(self.sync, self.sampler, self.fft, self.cfs, self.phase_diff, self.remove_pilot)
if self.rp.equalize_magnitude:
self.connect(self.remove_pilot, self.equalizer, self.deinterleave)
else:
self.connect(self.remove_pilot, self.deinterleave)
if self.rp.softbits:
if verbose: print("--> using soft bits")
self.softbit_interleaver = grdab.complex_to_interleaved_float_vcf(self.dp.num_carriers)
self.connect(self.deinterleave, self.softbit_interleaver, (self,0))
else:
self.connect(self.deinterleave, self.demapper, (self,0))
# calculate an estimate of the SNR
self.phase_var_decim = blocks.keep_one_in_n(gr.sizeof_gr_complex*self.dp.num_carriers, self.rp.phase_var_estimate_downsample)
self.phase_var_arg = blocks.complex_to_arg(dp.num_carriers)
self.phase_var_v2s = blocks.vector_to_stream(gr.sizeof_float, dp.num_carriers)
self.phase_var_mod = grdab.modulo_ff(pi/2)
self.phase_var_avg_mod = filter.iir_filter_ffd([rp.phase_var_estimate_alpha], [0,1-rp.phase_var_estimate_alpha])
self.phase_var_sub_avg = blocks.sub_ff()
self.phase_var_sqr = blocks.multiply_ff()
self.phase_var_avg = filter.iir_filter_ffd([rp.phase_var_estimate_alpha], [0,1-rp.phase_var_estimate_alpha])
self.probe_phase_var = blocks.probe_signal_f()
self.connect((self.remove_pilot,0), self.phase_var_decim, self.phase_var_arg, self.phase_var_v2s, self.phase_var_mod, (self.phase_var_sub_avg,0), (self.phase_var_sqr,0))
self.connect(self.phase_var_mod, self.phase_var_avg_mod, (self.phase_var_sub_avg,1))
self.connect(self.phase_var_sub_avg, (self.phase_var_sqr,1))
self.connect(self.phase_var_sqr, self.phase_var_avg, self.probe_phase_var)
# measure processing rate
self.measure_rate = grdab.measure_processing_rate(gr.sizeof_gr_complex, 2048000)
self.connect(self.input, self.measure_rate)
# debugging
if debug:
self.connect(self.fft, blocks.file_sink(gr.sizeof_gr_complex*dp.fft_length, "debug/ofdm_after_fft.dat"))
self.connect((self.cfs,0), blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_after_cfs.dat"))
self.connect(self.phase_diff, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_diff_phasor.dat"))
self.connect((self.remove_pilot,0), blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_pilot_removed.dat"))
self.connect((self.remove_pilot,1), blocks.file_sink(gr.sizeof_char, "debug/ofdm_after_cfs_trigger.dat"))
self.connect(self.deinterleave, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_deinterleaved.dat"))
if self.rp.equalize_magnitude:
self.connect(self.equalizer, blocks.file_sink(gr.sizeof_gr_complex*dp.num_carriers, "debug/ofdm_equalizer.dat"))
if self.rp.softbits:
self.connect(self.softbit_interleaver, blocks.file_sink(gr.sizeof_float*dp.num_carriers*2, "debug/softbits.dat"))
def clear_state(self):
self.sync.clear_state()
def update_correction(self):
while self.run_interpolater_update_thread:
rate = self.rate_prober.level()
if rate!=0:
self.resample.set_interp_ratio(rate/self.dp.sample_rate)
sleep(0.1)
def stop(self):
if self.run_interpolater_update_thread:
self.run_interpolater_update_thread = False
self.updater.join()
|