File: parameters.py

package info (click to toggle)
gr-dab 0.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,272 kB
  • sloc: python: 14,976; cpp: 6,738; ansic: 547; makefile: 19; sh: 11
file content (502 lines) | stat: -rw-r--r-- 22,784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
#!/usr/bin/env python
#
# Copyright 2008 Free Software Foundation, Inc.
# 
# This file is part of GNU Radio
# 
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# 
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING.  If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
# 

# Andreas Mueller, 2008
# andrmuel@ee.ethz.ch

class dab_parameters:
    """
    @brief Represents the DAB parameters.

    DAB parameters for mode I to IV

    as specified in
    ETSI EN 300 401 V1.4.1 (2006-06)
    "Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers"
    """

    # parameter values for all modes

    # OFDM parameters (section 14)
    # Table 38, page 145 of the DAB specification
    __symbols_per_frame__ = [76, 76, 153, 76]  # number of OFDM symbols per DAB frame (incl. pilot, excl. NS)
    __num_carriers__ = [1536, 384, 192, 768]  # number of carriers -> carrier width = 1536kHz/carriers
    __frame_length__ = [196608, 49152, 49152, 98304]  # samples per frame; in ms: 96,24,24,48 (incl. NS)
    __ns_length__ = [2656, 664, 345, 1328]  # length of null symbol in samples
    __symbol_length__ = [2552, 638, 319, 1276]  # length of an OFDM symbol in samples
    __fft_length__ = [2048, 512, 256, 1024]  # fft length
    __cp_length__ = [504, 126, 63, 252]  # length of cyclic prefix
    default_sample_rate = 2048000
    T = 1. / default_sample_rate

    # prn calculation data
    # tables 39-43 on pages 148 and 149

    # format: [mode][index][k_min, k_max, k', i, n]
    __prn_kin__ = [[
        [-768, -737, -768, 0, 1],
        [-736, -705, -736, 1, 2],
        [-704, -673, -704, 2, 0],
        [-672, -641, -672, 3, 1],
        [-640, -609, -640, 0, 3],
        [-608, -577, -608, 1, 2],
        [-576, -545, -576, 2, 2],
        [-544, -513, -544, 3, 3],
        [-512, -481, -512, 0, 2],
        [-480, -449, -480, 1, 1],
        [-448, -417, -448, 2, 2],
        [-416, -385, -416, 3, 3],
        [-384, -353, -384, 0, 1],
        [-352, -321, -352, 1, 2],
        [-320, -289, -320, 2, 3],
        [-288, -257, -288, 3, 3],
        [-256, -225, -256, 0, 2],
        [-224, -193, -224, 1, 2],
        [-192, -161, -192, 2, 2],
        [-160, -129, -160, 3, 1],
        [-128, -97, -128, 0, 1],
        [-96, -65, -96, 1, 3],
        [-64, -33, -64, 2, 1],
        [-32, -1, -32, 3, 2],
        [1, 32, 1, 0, 3],
        [33, 64, 33, 3, 1],
        [65, 96, 65, 2, 1],
        [97, 128, 97, 1, 1],
        [129, 160, 129, 0, 2],
        [161, 192, 161, 3, 2],
        [193, 224, 193, 2, 1],
        [225, 256, 225, 1, 0],
        [257, 288, 257, 0, 2],
        [289, 320, 289, 3, 2],
        [321, 352, 321, 2, 3],
        [353, 384, 353, 1, 3],
        [385, 416, 385, 0, 0],
        [417, 448, 417, 3, 2],
        [449, 480, 449, 2, 1],
        [481, 512, 481, 1, 3],
        [513, 544, 513, 0, 3],
        [545, 576, 545, 3, 3],
        [577, 608, 577, 2, 3],
        [609, 640, 609, 1, 0],
        [641, 672, 641, 0, 3],
        [673, 704, 673, 3, 0],
        [705, 736, 705, 2, 1],
        [737, 768, 737, 1, 1]
    ], [
        [-192, -161, -192, 0, 2],
        [-160, -129, -160, 1, 3],
        [-128, -97, -128, 2, 2],
        [-96, -65, -96, 3, 2],
        [-64, -33, -64, 0, 1],
        [-32, -1, -32, 1, 2],
        [1, 32, 1, 2, 0],
        [33, 64, 33, 1, 2],
        [65, 96, 65, 0, 2],
        [97, 128, 97, 3, 1],
        [129, 160, 129, 2, 0],
        [161, 192, 161, 1, 3]
    ], [
        [-96, -65, -96, 0, 2],
        [-64, -33, -64, 1, 3],
        [-32, -1, -32, 2, 0],
        [1, 32, 1, 3, 2],
        [33, 64, 33, 2, 2],
        [65, 96, 65, 1, 2]
    ], [
        [-384, -353, -384, 0, 0],
        [-352, -321, -352, 1, 1],
        [-320, -289, -320, 2, 1],
        [-288, -257, -288, 3, 2],
        [-256, -225, -256, 0, 2],
        [-224, -193, -224, 1, 2],
        [-192, -161, -192, 2, 0],
        [-160, -129, -160, 3, 3],
        [-128, -97, -128, 0, 3],
        [-96, -65, -96, 1, 1],
        [-64, -33, -64, 2, 3],
        [-32, -1, -32, 3, 2],
        [1, 32, 1, 0, 0],
        [33, 64, 33, 3, 1],
        [65, 96, 65, 2, 0],
        [97, 128, 97, 1, 2],
        [129, 160, 129, 0, 0],
        [161, 192, 161, 3, 1],
        [193, 224, 193, 2, 2],
        [225, 256, 225, 1, 2],
        [257, 288, 257, 0, 2],
        [289, 320, 289, 3, 1],
        [321, 352, 321, 2, 3],
        [353, 384, 353, 1, 0]
    ]]

    # h_i,j
    # note: values for h_i,j are the same as for h_i,j+16 ...
    __prn_h__ = [
        [0, 2, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 2, 2, 1, 1, 0, 2, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 2, 2, 1, 1],
        [0, 3, 2, 3, 0, 1, 3, 0, 2, 1, 2, 3, 2, 3, 3, 0, 0, 3, 2, 3, 0, 1, 3, 0, 2, 1, 2, 3, 2, 3, 3, 0],
        [0, 0, 0, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 0, 1, 3, 0, 0, 0, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 0, 1, 3],
        [0, 1, 2, 1, 0, 3, 3, 2, 2, 3, 2, 1, 2, 1, 3, 2, 0, 1, 2, 1, 0, 3, 3, 2, 2, 3, 2, 1, 2, 1, 3, 2]
    ]

    __expected_frequency_interleaving__ = [
        # these few values are listed in the specs - they are used to verify the sequence
        [-513, -14, 329, 692, -733, 13, 680, 273, -36, 43],
        [-129, -14, -55, -76, 163, 141, -88, 7, -111, -85],
        [-65, -14, 52, -29, -58, 77, 40, 71, -38, 81],
        [-257, -14, 73, 180, 198, -243, 168, 218, 17, 299]
    ]

    # transport mechanism parameters
    __num_fic_syms__ = [3, 3, 8, 3]  # number of OFDM symbols per frame belonging to the FIC
    __num_msc_syms__ = [72, 72, 144, 72] # number of OFDM symbols per frame belonging to the MSC

    # puncturing
    puncturing_vectors = [  # table 29, page 131
        [],  # "Who are you? How did you get in my house?"
        [1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
        # PI=1: code rate: 8/9
        [1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
        # PI=2: code rate: 8/10
        [1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
        # PI=3: code rate: 8/11
        [1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
        # PI=4: code rate: 8/12
        [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
        # PI=5: code rate: 8/13
        [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
        # PI=6: code rate: 8/14
        [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
        # PI=7: code rate: 8/15
        [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
        # PI=8: code rate: 8/16
        [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
        # PI=9: code rate: 8/17
        [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
        # PI=10 code rate: 8/18
        [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
        # PI=11 code rate: 8/19
        [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0],
        # PI=12 code rate: 8/20
        [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0],
        # PI=13 code rate: 8/21
        [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0],
        # PI=14 code rate: 8/22
        [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0],
        # PI=15 code rate: 8/23
        [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
        # PI=16 code rate: 8/24
        [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
        # PI=17 code rate: 8/25
        [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
        # PI=18 code rate: 8/26
        [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
        # PI=19 code rate: 8/27
        [1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        # PI=20 code rate: 8/28
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
        # PI=21 code rate: 8/29
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
        # PI=22 code rate: 8/30
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
        # PI=23 code rate: 8/31
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        # PI=24 code rate: 8/32
    ]
    puncturing_tail_vector = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]  # V_T
    puncturing_vectors_ones = [0, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
    # conv coding rate at a protection level, table 7
    conv_code_rate = [1/4, 3/8, 1/2, 3/4]
    subch_size_multiple_n = [12, 8, 6, 4]

    # convolutional coding - 11.1, page 129/130
    conv_code_generator_polynomials = [
        0o133,
        0o171,
        0o145,
        0o133
    ]
    conv_code_initial_state = 0
    conv_code_final_state = 0
    conv_code_constraint_length = 7
    conv_code_in_bits = 1
    conv_code_add_bits_input = 6
    conv_code_out_bits = 4
    __fic_conv_codeword_length__ = [3096, 3096, 4120, 3096]  # 4*I + 24
    __fic_punctured_codeword_length__ = [2304, 2304, 3072, 2304]

    # energy dispersal

    __energy_dispersal_fic_fibs_per_vector__ = [3, 3, 4, 3]
    __energy_dispersal_fic_vector_length__ = [768, 768, 1024, 768]  # I
    __prbs_bits__ = [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                     0]  # first 16 PRBS bits are given in the standard - can be used for another assert
    # time interleaving
    scrambling_vector = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]

    # transport mechanism parameters
    fib_bits = 256
    cif_bits = 55296
    __num_fibs__ = [12, 3, 4, 6]  # FIC
    __num_cifs__ = [4, 1, 1, 2]  # MSC -> num cifs = num fib groups
    num_cus = 864 # number of CUs in one cif
    msc_cu_size = 64 # size of capacity unit in msc (smallest unit)

    def __init__(self, mode, sample_rate=2048000, verbose=True):
        """
        selects the correct parameters for the selected mode and calculates the prn sequence, etc.

        @param mode DAB mode (I-IV)
        @param sample_rate sampling frequency
        """
        if verbose:
            print("--> creating DAB parameter object") # should not be seen more than once

        assert (mode >= 1 and mode <= 4)
        self.mode = mode
        self.sample_rate = sample_rate
        self.verbose = verbose

        # sanity checks:
        for i in range(0, 4):
            # OFDM parameters
            assert (
            self.__symbols_per_frame__[i] * self.__symbol_length__[i] + self.__ns_length__[i] == self.__frame_length__[
                i])
            assert (self.__symbol_length__[i] == self.__fft_length__[i] + self.__cp_length__[i])
            # block partitioning
            assert (self.__num_carriers__[i] * 2 * self.__num_fic_syms__[i] / self.__num_cifs__[i] ==
                    self.__fic_punctured_codeword_length__[i])
            # energy dispersal parameters
            assert (self.__energy_dispersal_fic_fibs_per_vector__[i] * self.fib_bits ==
                    self.__energy_dispersal_fic_vector_length__[i])
            assert (3 * self.__energy_dispersal_fic_vector_length__[i] == self.__fic_punctured_codeword_length__[
                i])  # not sure - according to specification, code rate is only approximately 1/3, but seems to be exact

        # sanity checks for PRBS sequence (energy dispersal)
        assert (self.prbs(16) == self.__prbs_bits__)  # bits from DAB standard
        assert (self.prbs(511) == self.prbs(1022)[511:])  # sequence must repeat itself
        if verbose:
            print("--> DAB parameters self check ok")

        self.__update_parameters__()

    def set_mode(self, mode):
        if self.verbose:
            print("--> setting DAB mode to " + str(mode))
        self.mode = mode
        self.__update_parameters__()

    def set_sample_rate(self, sample_rate):
        if self.verbose:
            print("--> setting sample rate to " + str(sample_rate))
        self.sample_rate = sample_rate
        self.__update_parameters__()

    def __update_parameters__(self):
        if self.verbose:
            print("--> updating DAB parameters")
        mode = self.mode
        # OFDM parameters (14)
        self.symbols_per_frame = self.__symbols_per_frame__[mode - 1]
        self.num_carriers = self.__num_carriers__[mode - 1]
        self.frame_length = self.__frame_length__[mode - 1]
        self.ns_length = self.__ns_length__[mode - 1]
        self.symbol_length = self.__symbol_length__[mode - 1]
        self.fft_length = self.__fft_length__[mode - 1]
        self.cp_length = self.__cp_length__[mode - 1]

        # bytes per frame and bytes per symbol
        self.bytes_per_frame = (self.symbols_per_frame - 1) * self.num_carriers / 4
        self.bytes_per_symbol = self.num_carriers / 4

        # prn sequence
        self.prn = []
        for k in range(-self.num_carriers // 2, self.num_carriers // 2 + 1):
            if k == 0:
                # self.prn.append(0)
                pass
            else:
                [kk, i, n] = self.__get_prn_kk_i_n__(k)
                h = self.__prn_h__[i][k - kk]
                phi_k = (h + n) % 4  # actually phi_k/(pi/2)
                if phi_k == 0:  # e^(j*pi/2*phi_k) is not exact if calculated by python
                    self.prn.append(1)
                elif phi_k == 1:
                    self.prn.append(1j)
                elif phi_k == 2:
                    self.prn.append(-1)
                elif phi_k == 3:
                    self.prn.append(-1j)

        # frequency (de)interleaving
        a = self.fft_length / 4 - 1
        b = self.fft_length
        A = [0]
        for i in range(1, self.fft_length):
            A.append((13 * A[-1] + a) % b)
        D = [d for d in A if d >= self.fft_length / 8 and d <= 7 * self.fft_length / 8 and d != self.fft_length / 2]
        assert (len(D) == self.num_carriers)
        self.frequency_interleaving_sequence = [d - self.fft_length / 2 for d in D]
        assert (self.frequency_interleaving_sequence[0:len(self.__expected_frequency_interleaving__[mode - 1])] ==
                self.__expected_frequency_interleaving__[mode - 1])
        # sequence for arrays, with indices starting from 0 and central carrier already removed
        self.frequency_interleaving_sequence_array = [k + self.num_carriers / 2 - (k > 0) for k in
                                                      self.frequency_interleaving_sequence]
        assert (len(self.frequency_interleaving_sequence_array) == self.num_carriers)
        assert (min(self.frequency_interleaving_sequence_array) == 0)
        assert (max(self.frequency_interleaving_sequence_array) == self.num_carriers - 1)
        assert (len(set(self.frequency_interleaving_sequence_array)) == len(
            self.frequency_interleaving_sequence_array))  # uniqueness of elements

        # frequency deinterleaving sequence
        self.frequency_deinterleaving_sequence_array = [self.frequency_interleaving_sequence_array.index(i) for i in
                                                        range(0, self.num_carriers)]

        # adapt for non-standard sample rate - do this at end, frequency interleaving calculation still needs default fft length
        if self.sample_rate != self.default_sample_rate:
            if self.verbose:
                print("--> using non-standard sample rate: " + str(self.sample_rate))
            self.T = 1. / self.sample_rate
            self.ns_length = int(round(self.ns_length * float(self.sample_rate) / float(self.default_sample_rate)))
            self.cp_length = int(round(self.cp_length * float(self.sample_rate) / float(self.default_sample_rate)))
            self.fft_length = int(round(self.fft_length * float(self.sample_rate) / float(self.default_sample_rate)))
            self.symbol_length = self.cp_length + self.fft_length
            self.frame_length = self.symbols_per_frame * self.symbol_length + self.ns_length

        # block partitioning parameters (14.4)
        self.num_fic_syms = self.__num_fic_syms__[mode - 1]
        self.num_msc_syms = self.__num_msc_syms__[mode - 1]

        # convolutional coding (11)
        self.fic_conv_codeword_length = self.__fic_conv_codeword_length__[mode - 1]  # length after puncturing

        # unpuncturing sequence (assembled, such that it can be applied on a complete fib group)
        # see 11.2 page 132
        self.fic_punctured_codeword_length = self.__fic_punctured_codeword_length__[mode - 1]
        if mode in [1, 2, 4]:
            self.assembled_fic_puncturing_sequence = 21 * 4 * self.puncturing_vectors[16] + 3 * 4 * \
                                                                                            self.puncturing_vectors[
                                                                                                15] + self.puncturing_tail_vector
        else:
            self.assembled_fic_puncturing_sequence = 29 * 4 * self.puncturing_vectors[16] + 3 * 4 * \
                                                                                            self.puncturing_vectors[
                                                                                                15] + self.puncturing_tail_vector
        assert (len(self.assembled_fic_puncturing_sequence) == self.fic_conv_codeword_length)
        #assert (
        #len(filter(lambda x: x == 1, self.assembled_fic_puncturing_sequence)) == self.fic_punctured_codeword_length)

        # energy dispersal (10)
        self.energy_dispersal_fic_fibs_per_vector = self.__energy_dispersal_fic_fibs_per_vector__[mode - 1]
        self.energy_dispersal_fic_vector_length = self.__energy_dispersal_fic_vector_length__[mode - 1]

        # transport mechanism parameters (5)
        self.num_fibs = self.__num_fibs__[mode - 1]
        self.num_cifs = self.__num_cifs__[mode - 1]

    def __get_prn_kk_i_n__(self, k):
        assert (k != 0)
        assert (abs(k) <= self.num_carriers // 2)
        if k < 0:
            index = (k + self.num_carriers // 2) // 32
            kk = 32 * (int(k) // 32)
        else:
            index = (k + self.num_carriers // 2 - 1) // 32
            kk = 32 * (int(k - 1) // 32) + 1
        values = self.__prn_kin__[self.mode - 1][index]
        assert (k >= values[0] and k <= values[1])
        assert (kk == values[2])
        i = values[3]
        n = values[4]
        return [kk, i, n]

    def prbs(self, length):
        """
        PRBS generated with the polynomial p(x) = x^9 + x^5 + 1
        and initial state 111111111

        @param length number of bits in the sequence
        """
        bits = [1] * 9
        sequence = []
        for i in range(0, length):
            newbit = bits[8] ^ bits[4]
            bits = [newbit] + bits[0:-1]
            sequence.append(newbit)
        return sequence

class receiver_parameters:
    """
    @brief Parameters for the receiver, independent of the DAB standard
    """
    # filter at input
    filt_bw = (768 + 100) * 1e3
    filt_tb = 50e3

    # OFDM stuff
    __cp_gap__ = [252, 63, 31, 124]  # gap for ofdm_sampler to leave before the start of the next symbol
    __symbols_for_ffs_estimation__ = [8, 8, 16, 8]  # number of symbols to evaluate for fine frequency error estimation
    __symbols_for_magnitude_equalization__ = [6, 6, 12,
                                              6]  # how many symbols should be used to estimate magnitude equalizer?
    ffs_alpha = 0.5

    # phase variance estimation
    phase_var_estimate_alpha = 0.01
    phase_var_estimate_downsample = 100  # 50 -> uses about 1% of the CPU time

    # for USRP
    usrp_ffc_retune_frequency = 5  # how often should the USRP be retuned at most?
    usrp_ffc_min_deviation = 5  # how far off does the FFE have to be to retune the USRP?
    usrp_ffc_adapt_factor = 0.5  # how much to adapt the correction?

    def __init__(self, mode, sample_rate=2048000, softbits=False, input_fft_filter=True, autocorrect_sample_rate=False,
                 sample_rate_correction_factor=1, correct_ffe=True, equalize_magnitude=True, verbose=True, always_include_resample=False):
        """
        Create new instance.

        @param mode DAB mode (I-IV)
        @param sample_rate sampling frequency
        @param input_fft_filter whether to use an FFT filter at the input
        @param autocorrect_sample_rate whether to correct the sample rate dynamically
        @param sample_rate_correction_factor static correction factor for sample rate
        @parem correct_ffe if False, only estimate fine frequency error - don't correct it
        @param verbose be talkative
        """
        if verbose:
            print("--> creating RX parameter object")
        assert (mode >= 1 and mode <= 4)

        self.set_mode(mode)
        self.sample_rate = sample_rate
        self.softbits = softbits
        self.input_fft_filter = input_fft_filter
        self.autocorrect_sample_rate = autocorrect_sample_rate
        self.sample_rate_correction_factor = sample_rate_correction_factor
        self.correct_ffe = correct_ffe
        self.equalize_magnitude = equalize_magnitude
        self.verbose = verbose
        self.always_include_resample = always_include_resample

    def set_mode(self, mode):
        self.mode = mode
        self.cp_gap = self.__cp_gap__[mode - 1]
        self.symbols_for_ffs_estimation = self.__symbols_for_ffs_estimation__[mode - 1]
        self.symbols_for_magnitude_equalization = self.__symbols_for_magnitude_equalization__[mode - 1]