1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
#!/usr/bin/env python
#
# Copyright 2008 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
# Andreas Mueller, 2008
# andrmuel@ee.ethz.ch
class dab_parameters:
"""
@brief Represents the DAB parameters.
DAB parameters for mode I to IV
as specified in
ETSI EN 300 401 V1.4.1 (2006-06)
"Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers"
"""
# parameter values for all modes
# OFDM parameters (section 14)
# Table 38, page 145 of the DAB specification
__symbols_per_frame__ = [76, 76, 153, 76] # number of OFDM symbols per DAB frame (incl. pilot, excl. NS)
__num_carriers__ = [1536, 384, 192, 768] # number of carriers -> carrier width = 1536kHz/carriers
__frame_length__ = [196608, 49152, 49152, 98304] # samples per frame; in ms: 96,24,24,48 (incl. NS)
__ns_length__ = [2656, 664, 345, 1328] # length of null symbol in samples
__symbol_length__ = [2552, 638, 319, 1276] # length of an OFDM symbol in samples
__fft_length__ = [2048, 512, 256, 1024] # fft length
__cp_length__ = [504, 126, 63, 252] # length of cyclic prefix
default_sample_rate = 2048000
T = 1. / default_sample_rate
# prn calculation data
# tables 39-43 on pages 148 and 149
# format: [mode][index][k_min, k_max, k', i, n]
__prn_kin__ = [[
[-768, -737, -768, 0, 1],
[-736, -705, -736, 1, 2],
[-704, -673, -704, 2, 0],
[-672, -641, -672, 3, 1],
[-640, -609, -640, 0, 3],
[-608, -577, -608, 1, 2],
[-576, -545, -576, 2, 2],
[-544, -513, -544, 3, 3],
[-512, -481, -512, 0, 2],
[-480, -449, -480, 1, 1],
[-448, -417, -448, 2, 2],
[-416, -385, -416, 3, 3],
[-384, -353, -384, 0, 1],
[-352, -321, -352, 1, 2],
[-320, -289, -320, 2, 3],
[-288, -257, -288, 3, 3],
[-256, -225, -256, 0, 2],
[-224, -193, -224, 1, 2],
[-192, -161, -192, 2, 2],
[-160, -129, -160, 3, 1],
[-128, -97, -128, 0, 1],
[-96, -65, -96, 1, 3],
[-64, -33, -64, 2, 1],
[-32, -1, -32, 3, 2],
[1, 32, 1, 0, 3],
[33, 64, 33, 3, 1],
[65, 96, 65, 2, 1],
[97, 128, 97, 1, 1],
[129, 160, 129, 0, 2],
[161, 192, 161, 3, 2],
[193, 224, 193, 2, 1],
[225, 256, 225, 1, 0],
[257, 288, 257, 0, 2],
[289, 320, 289, 3, 2],
[321, 352, 321, 2, 3],
[353, 384, 353, 1, 3],
[385, 416, 385, 0, 0],
[417, 448, 417, 3, 2],
[449, 480, 449, 2, 1],
[481, 512, 481, 1, 3],
[513, 544, 513, 0, 3],
[545, 576, 545, 3, 3],
[577, 608, 577, 2, 3],
[609, 640, 609, 1, 0],
[641, 672, 641, 0, 3],
[673, 704, 673, 3, 0],
[705, 736, 705, 2, 1],
[737, 768, 737, 1, 1]
], [
[-192, -161, -192, 0, 2],
[-160, -129, -160, 1, 3],
[-128, -97, -128, 2, 2],
[-96, -65, -96, 3, 2],
[-64, -33, -64, 0, 1],
[-32, -1, -32, 1, 2],
[1, 32, 1, 2, 0],
[33, 64, 33, 1, 2],
[65, 96, 65, 0, 2],
[97, 128, 97, 3, 1],
[129, 160, 129, 2, 0],
[161, 192, 161, 1, 3]
], [
[-96, -65, -96, 0, 2],
[-64, -33, -64, 1, 3],
[-32, -1, -32, 2, 0],
[1, 32, 1, 3, 2],
[33, 64, 33, 2, 2],
[65, 96, 65, 1, 2]
], [
[-384, -353, -384, 0, 0],
[-352, -321, -352, 1, 1],
[-320, -289, -320, 2, 1],
[-288, -257, -288, 3, 2],
[-256, -225, -256, 0, 2],
[-224, -193, -224, 1, 2],
[-192, -161, -192, 2, 0],
[-160, -129, -160, 3, 3],
[-128, -97, -128, 0, 3],
[-96, -65, -96, 1, 1],
[-64, -33, -64, 2, 3],
[-32, -1, -32, 3, 2],
[1, 32, 1, 0, 0],
[33, 64, 33, 3, 1],
[65, 96, 65, 2, 0],
[97, 128, 97, 1, 2],
[129, 160, 129, 0, 0],
[161, 192, 161, 3, 1],
[193, 224, 193, 2, 2],
[225, 256, 225, 1, 2],
[257, 288, 257, 0, 2],
[289, 320, 289, 3, 1],
[321, 352, 321, 2, 3],
[353, 384, 353, 1, 0]
]]
# h_i,j
# note: values for h_i,j are the same as for h_i,j+16 ...
__prn_h__ = [
[0, 2, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 2, 2, 1, 1, 0, 2, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 2, 2, 1, 1],
[0, 3, 2, 3, 0, 1, 3, 0, 2, 1, 2, 3, 2, 3, 3, 0, 0, 3, 2, 3, 0, 1, 3, 0, 2, 1, 2, 3, 2, 3, 3, 0],
[0, 0, 0, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 0, 1, 3, 0, 0, 0, 2, 0, 2, 1, 3, 2, 2, 0, 2, 2, 0, 1, 3],
[0, 1, 2, 1, 0, 3, 3, 2, 2, 3, 2, 1, 2, 1, 3, 2, 0, 1, 2, 1, 0, 3, 3, 2, 2, 3, 2, 1, 2, 1, 3, 2]
]
__expected_frequency_interleaving__ = [
# these few values are listed in the specs - they are used to verify the sequence
[-513, -14, 329, 692, -733, 13, 680, 273, -36, 43],
[-129, -14, -55, -76, 163, 141, -88, 7, -111, -85],
[-65, -14, 52, -29, -58, 77, 40, 71, -38, 81],
[-257, -14, 73, 180, 198, -243, 168, 218, 17, 299]
]
# transport mechanism parameters
__num_fic_syms__ = [3, 3, 8, 3] # number of OFDM symbols per frame belonging to the FIC
__num_msc_syms__ = [72, 72, 144, 72] # number of OFDM symbols per frame belonging to the MSC
# puncturing
puncturing_vectors = [ # table 29, page 131
[], # "Who are you? How did you get in my house?"
[1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
# PI=1: code rate: 8/9
[1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
# PI=2: code rate: 8/10
[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
# PI=3: code rate: 8/11
[1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
# PI=4: code rate: 8/12
[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
# PI=5: code rate: 8/13
[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
# PI=6: code rate: 8/14
[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0],
# PI=7: code rate: 8/15
[1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
# PI=8: code rate: 8/16
[1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
# PI=9: code rate: 8/17
[1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
# PI=10 code rate: 8/18
[1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0],
# PI=11 code rate: 8/19
[1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0],
# PI=12 code rate: 8/20
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0],
# PI=13 code rate: 8/21
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0],
# PI=14 code rate: 8/22
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0],
# PI=15 code rate: 8/23
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
# PI=16 code rate: 8/24
[1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
# PI=17 code rate: 8/25
[1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
# PI=18 code rate: 8/26
[1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0],
# PI=19 code rate: 8/27
[1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
# PI=20 code rate: 8/28
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0],
# PI=21 code rate: 8/29
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
# PI=22 code rate: 8/30
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
# PI=23 code rate: 8/31
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
# PI=24 code rate: 8/32
]
puncturing_tail_vector = [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0] # V_T
puncturing_vectors_ones = [0, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
# conv coding rate at a protection level, table 7
conv_code_rate = [1/4, 3/8, 1/2, 3/4]
subch_size_multiple_n = [12, 8, 6, 4]
# convolutional coding - 11.1, page 129/130
conv_code_generator_polynomials = [
0o133,
0o171,
0o145,
0o133
]
conv_code_initial_state = 0
conv_code_final_state = 0
conv_code_constraint_length = 7
conv_code_in_bits = 1
conv_code_add_bits_input = 6
conv_code_out_bits = 4
__fic_conv_codeword_length__ = [3096, 3096, 4120, 3096] # 4*I + 24
__fic_punctured_codeword_length__ = [2304, 2304, 3072, 2304]
# energy dispersal
__energy_dispersal_fic_fibs_per_vector__ = [3, 3, 4, 3]
__energy_dispersal_fic_vector_length__ = [768, 768, 1024, 768] # I
__prbs_bits__ = [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0] # first 16 PRBS bits are given in the standard - can be used for another assert
# time interleaving
scrambling_vector = [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
# transport mechanism parameters
fib_bits = 256
cif_bits = 55296
__num_fibs__ = [12, 3, 4, 6] # FIC
__num_cifs__ = [4, 1, 1, 2] # MSC -> num cifs = num fib groups
num_cus = 864 # number of CUs in one cif
msc_cu_size = 64 # size of capacity unit in msc (smallest unit)
def __init__(self, mode, sample_rate=2048000, verbose=True):
"""
selects the correct parameters for the selected mode and calculates the prn sequence, etc.
@param mode DAB mode (I-IV)
@param sample_rate sampling frequency
"""
if verbose:
print("--> creating DAB parameter object") # should not be seen more than once
assert (mode >= 1 and mode <= 4)
self.mode = mode
self.sample_rate = sample_rate
self.verbose = verbose
# sanity checks:
for i in range(0, 4):
# OFDM parameters
assert (
self.__symbols_per_frame__[i] * self.__symbol_length__[i] + self.__ns_length__[i] == self.__frame_length__[
i])
assert (self.__symbol_length__[i] == self.__fft_length__[i] + self.__cp_length__[i])
# block partitioning
assert (self.__num_carriers__[i] * 2 * self.__num_fic_syms__[i] / self.__num_cifs__[i] ==
self.__fic_punctured_codeword_length__[i])
# energy dispersal parameters
assert (self.__energy_dispersal_fic_fibs_per_vector__[i] * self.fib_bits ==
self.__energy_dispersal_fic_vector_length__[i])
assert (3 * self.__energy_dispersal_fic_vector_length__[i] == self.__fic_punctured_codeword_length__[
i]) # not sure - according to specification, code rate is only approximately 1/3, but seems to be exact
# sanity checks for PRBS sequence (energy dispersal)
assert (self.prbs(16) == self.__prbs_bits__) # bits from DAB standard
assert (self.prbs(511) == self.prbs(1022)[511:]) # sequence must repeat itself
if verbose:
print("--> DAB parameters self check ok")
self.__update_parameters__()
def set_mode(self, mode):
if self.verbose:
print("--> setting DAB mode to " + str(mode))
self.mode = mode
self.__update_parameters__()
def set_sample_rate(self, sample_rate):
if self.verbose:
print("--> setting sample rate to " + str(sample_rate))
self.sample_rate = sample_rate
self.__update_parameters__()
def __update_parameters__(self):
if self.verbose:
print("--> updating DAB parameters")
mode = self.mode
# OFDM parameters (14)
self.symbols_per_frame = self.__symbols_per_frame__[mode - 1]
self.num_carriers = self.__num_carriers__[mode - 1]
self.frame_length = self.__frame_length__[mode - 1]
self.ns_length = self.__ns_length__[mode - 1]
self.symbol_length = self.__symbol_length__[mode - 1]
self.fft_length = self.__fft_length__[mode - 1]
self.cp_length = self.__cp_length__[mode - 1]
# bytes per frame and bytes per symbol
self.bytes_per_frame = (self.symbols_per_frame - 1) * self.num_carriers / 4
self.bytes_per_symbol = self.num_carriers / 4
# prn sequence
self.prn = []
for k in range(-self.num_carriers // 2, self.num_carriers // 2 + 1):
if k == 0:
# self.prn.append(0)
pass
else:
[kk, i, n] = self.__get_prn_kk_i_n__(k)
h = self.__prn_h__[i][k - kk]
phi_k = (h + n) % 4 # actually phi_k/(pi/2)
if phi_k == 0: # e^(j*pi/2*phi_k) is not exact if calculated by python
self.prn.append(1)
elif phi_k == 1:
self.prn.append(1j)
elif phi_k == 2:
self.prn.append(-1)
elif phi_k == 3:
self.prn.append(-1j)
# frequency (de)interleaving
a = self.fft_length / 4 - 1
b = self.fft_length
A = [0]
for i in range(1, self.fft_length):
A.append((13 * A[-1] + a) % b)
D = [d for d in A if d >= self.fft_length / 8 and d <= 7 * self.fft_length / 8 and d != self.fft_length / 2]
assert (len(D) == self.num_carriers)
self.frequency_interleaving_sequence = [d - self.fft_length / 2 for d in D]
assert (self.frequency_interleaving_sequence[0:len(self.__expected_frequency_interleaving__[mode - 1])] ==
self.__expected_frequency_interleaving__[mode - 1])
# sequence for arrays, with indices starting from 0 and central carrier already removed
self.frequency_interleaving_sequence_array = [k + self.num_carriers / 2 - (k > 0) for k in
self.frequency_interleaving_sequence]
assert (len(self.frequency_interleaving_sequence_array) == self.num_carriers)
assert (min(self.frequency_interleaving_sequence_array) == 0)
assert (max(self.frequency_interleaving_sequence_array) == self.num_carriers - 1)
assert (len(set(self.frequency_interleaving_sequence_array)) == len(
self.frequency_interleaving_sequence_array)) # uniqueness of elements
# frequency deinterleaving sequence
self.frequency_deinterleaving_sequence_array = [self.frequency_interleaving_sequence_array.index(i) for i in
range(0, self.num_carriers)]
# adapt for non-standard sample rate - do this at end, frequency interleaving calculation still needs default fft length
if self.sample_rate != self.default_sample_rate:
if self.verbose:
print("--> using non-standard sample rate: " + str(self.sample_rate))
self.T = 1. / self.sample_rate
self.ns_length = int(round(self.ns_length * float(self.sample_rate) / float(self.default_sample_rate)))
self.cp_length = int(round(self.cp_length * float(self.sample_rate) / float(self.default_sample_rate)))
self.fft_length = int(round(self.fft_length * float(self.sample_rate) / float(self.default_sample_rate)))
self.symbol_length = self.cp_length + self.fft_length
self.frame_length = self.symbols_per_frame * self.symbol_length + self.ns_length
# block partitioning parameters (14.4)
self.num_fic_syms = self.__num_fic_syms__[mode - 1]
self.num_msc_syms = self.__num_msc_syms__[mode - 1]
# convolutional coding (11)
self.fic_conv_codeword_length = self.__fic_conv_codeword_length__[mode - 1] # length after puncturing
# unpuncturing sequence (assembled, such that it can be applied on a complete fib group)
# see 11.2 page 132
self.fic_punctured_codeword_length = self.__fic_punctured_codeword_length__[mode - 1]
if mode in [1, 2, 4]:
self.assembled_fic_puncturing_sequence = 21 * 4 * self.puncturing_vectors[16] + 3 * 4 * \
self.puncturing_vectors[
15] + self.puncturing_tail_vector
else:
self.assembled_fic_puncturing_sequence = 29 * 4 * self.puncturing_vectors[16] + 3 * 4 * \
self.puncturing_vectors[
15] + self.puncturing_tail_vector
assert (len(self.assembled_fic_puncturing_sequence) == self.fic_conv_codeword_length)
#assert (
#len(filter(lambda x: x == 1, self.assembled_fic_puncturing_sequence)) == self.fic_punctured_codeword_length)
# energy dispersal (10)
self.energy_dispersal_fic_fibs_per_vector = self.__energy_dispersal_fic_fibs_per_vector__[mode - 1]
self.energy_dispersal_fic_vector_length = self.__energy_dispersal_fic_vector_length__[mode - 1]
# transport mechanism parameters (5)
self.num_fibs = self.__num_fibs__[mode - 1]
self.num_cifs = self.__num_cifs__[mode - 1]
def __get_prn_kk_i_n__(self, k):
assert (k != 0)
assert (abs(k) <= self.num_carriers // 2)
if k < 0:
index = (k + self.num_carriers // 2) // 32
kk = 32 * (int(k) // 32)
else:
index = (k + self.num_carriers // 2 - 1) // 32
kk = 32 * (int(k - 1) // 32) + 1
values = self.__prn_kin__[self.mode - 1][index]
assert (k >= values[0] and k <= values[1])
assert (kk == values[2])
i = values[3]
n = values[4]
return [kk, i, n]
def prbs(self, length):
"""
PRBS generated with the polynomial p(x) = x^9 + x^5 + 1
and initial state 111111111
@param length number of bits in the sequence
"""
bits = [1] * 9
sequence = []
for i in range(0, length):
newbit = bits[8] ^ bits[4]
bits = [newbit] + bits[0:-1]
sequence.append(newbit)
return sequence
class receiver_parameters:
"""
@brief Parameters for the receiver, independent of the DAB standard
"""
# filter at input
filt_bw = (768 + 100) * 1e3
filt_tb = 50e3
# OFDM stuff
__cp_gap__ = [252, 63, 31, 124] # gap for ofdm_sampler to leave before the start of the next symbol
__symbols_for_ffs_estimation__ = [8, 8, 16, 8] # number of symbols to evaluate for fine frequency error estimation
__symbols_for_magnitude_equalization__ = [6, 6, 12,
6] # how many symbols should be used to estimate magnitude equalizer?
ffs_alpha = 0.5
# phase variance estimation
phase_var_estimate_alpha = 0.01
phase_var_estimate_downsample = 100 # 50 -> uses about 1% of the CPU time
# for USRP
usrp_ffc_retune_frequency = 5 # how often should the USRP be retuned at most?
usrp_ffc_min_deviation = 5 # how far off does the FFE have to be to retune the USRP?
usrp_ffc_adapt_factor = 0.5 # how much to adapt the correction?
def __init__(self, mode, sample_rate=2048000, softbits=False, input_fft_filter=True, autocorrect_sample_rate=False,
sample_rate_correction_factor=1, correct_ffe=True, equalize_magnitude=True, verbose=True, always_include_resample=False):
"""
Create new instance.
@param mode DAB mode (I-IV)
@param sample_rate sampling frequency
@param input_fft_filter whether to use an FFT filter at the input
@param autocorrect_sample_rate whether to correct the sample rate dynamically
@param sample_rate_correction_factor static correction factor for sample rate
@parem correct_ffe if False, only estimate fine frequency error - don't correct it
@param verbose be talkative
"""
if verbose:
print("--> creating RX parameter object")
assert (mode >= 1 and mode <= 4)
self.set_mode(mode)
self.sample_rate = sample_rate
self.softbits = softbits
self.input_fft_filter = input_fft_filter
self.autocorrect_sample_rate = autocorrect_sample_rate
self.sample_rate_correction_factor = sample_rate_correction_factor
self.correct_ffe = correct_ffe
self.equalize_magnitude = equalize_magnitude
self.verbose = verbose
self.always_include_resample = always_include_resample
def set_mode(self, mode):
self.mode = mode
self.cp_gap = self.__cp_gap__[mode - 1]
self.symbols_for_ffs_estimation = self.__symbols_for_ffs_estimation__[mode - 1]
self.symbols_for_magnitude_equalization = self.__symbols_for_magnitude_equalization__[mode - 1]
|