File: fft.cl

package info (click to toggle)
gr-fosphor 3.7.0.2.7b6b996-1~bpo8%2B1
  • links: PTS, VCS
  • area: main
  • in suites: jessie-backports
  • size: 1,364 kB
  • sloc: python: 9,622; ansic: 3,211; cpp: 1,048; lisp: 609; xml: 260; makefile: 32
file content (468 lines) | stat: -rw-r--r-- 9,813 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * fft.cl
 *
 * FFT OpenCL kernel
 *
 * Copyright (C) 2013-2014 Sylvain Munaut
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * NOTE (to make it clear): For the purpose of this license, any software
 * making use of this kernel (or derivative thereof) is considered to be
 * a derivative work (i.e. "a work based on the Program").
 */

#define M_PIf (3.141592653589f)

/* ------------------------------------------------------------------------ */
/* Complex numbers                                                          */
/* ------------------------------------------------------------------------ */

/*
 * float2  (re,im)
 * float4  (re0,im0,re1,im1)
 */

#define CMUL_RE(a,b) (a.even*b.even - a.odd*b.odd)
#define CMUL_IM(a,b) (a.even*b.odd  + a.odd*b.even)

float2 cmul_1(float2 a, float2 b)
{
	float2 x;
	x.even = CMUL_RE(a,b);
	x.odd  = CMUL_IM(a,b);
	return x;
}

float4 cmul_2(float4 a, float4 b)
{
	float4 x;
	x.even = CMUL_RE(a,b);
	x.odd  = CMUL_IM(a,b);
	return x;
}

/* ------------------------------------------------------------------------ */
/* DFT bases                                                                */
/* ------------------------------------------------------------------------ */

/* Return a * e^(k * alpha * 1j) */
float2
twiddle(float2 a, int k, float alpha)
{
	float cv, sv;
//	sv = sincos(k * alpha, &cv);
	sv = native_sin(k*alpha);
	cv = native_cos(k*alpha);
	return cmul_1(a, (float2)(cv,sv));
}

/* Optimized constant version */
__constant float SQRT_1_2 = 0.707106781188f; /* cos(PI/4) */

#define mul_p0q1(a) (a)

#define mul_p0q2 mul_p0q1
float2  mul_p1q2(float2 a) { return (float2)(a.y,-a.x); }

#define mul_p0q4 mul_p0q2
float2  mul_p1q4(float2 a) { return (float2)(SQRT_1_2)*(float2)(a.x+a.y,-a.x+a.y); }
#define mul_p2q4 mul_p1q2
float2  mul_p3q4(float2 a) { return (float2)(SQRT_1_2)*(float2)(-a.x+a.y,-a.x-a.y); }


/* in-place DFT */
__attribute__((always_inline)) void
dft2(float2 *r0, float2 *r1)
{
	float2 tmp;

	tmp = *r0 - *r1;
	*r0 = *r0 + *r1;
	*r1 = tmp;
}

__attribute__((always_inline)) void
dft4(float2 *r0, float2 *r1, float2 *r2, float2 *r3)
{
	/* 2x DFT2 */
	dft2(r0,r2);
	dft2(r1,r3);

	/* Twiddle */
	*r2 = mul_p0q2(*r2);	/* nop */
	*r3 = mul_p1q2(*r3);

	/* 2x DFT2 */
	dft2(r0,r1);
	dft2(r2,r3);
}

__attribute__((always_inline)) void
dft8(float2 *r0, float2 *r1, float2 *r2, float2 *r3,
     float2 *r4, float2 *r5, float2 *r6, float2 *r7)
{
	/* 4x DFT2 */
	dft2(r0, r4);
	dft2(r1, r5);
	dft2(r2, r6);
	dft2(r3, r7);

	/* Twiddle */
	*r4 = mul_p0q4(*r4);	/* nop */
	*r5 = mul_p1q4(*r5);
	*r6 = mul_p2q4(*r6);
	*r7 = mul_p3q4(*r7);

	/* 4x DFT2 */
	dft2(r0, r2);
	dft2(r1, r3);
	dft2(r4, r6);
	dft2(r5, r7);

	/* Twiddle */
	*r2 = mul_p0q2(*r2);	/* nop */
	*r3 = mul_p1q2(*r3);
	*r6 = mul_p0q2(*r6);	/* nop */
	*r7 = mul_p1q2(*r7);

	/* 4x DFT2 */
	dft2(r0, r1);
	dft2(r2, r3);
	dft2(r4, r5);
	dft2(r6, r7);
}


/* ------------------------------------------------------------------------ */
/* FFT radices                                                              */
/* ------------------------------------------------------------------------ */

/* FFT radix 2 */

__attribute__((always_inline)) void
fft_radix2_exec(float2 *r)
{
	/* In-place DFT2 */
	dft2(&r[0], &r[1]);
}

__attribute__((always_inline)) void
fft_radix2_twiddle(float2 *r, int k, int p)
{
	float alpha = -M_PIf * (float)k / (float)(p);

	r[1] = twiddle(r[1],1,alpha);
}

__attribute__((always_inline)) void
fft_radix2_load(__local float2 *buf, float2 *r, int i, int t)
{
	buf += i;

	r[0] = buf[  0];
	r[1] = buf[  t];
}

__attribute__((always_inline)) void
fft_radix2_store(__local float2 *buf, float2 *r, int i, int k, int p)
{
	int j = ((i-k)<<1) + k;

	buf += j;

	buf[  0] = r[0];
	buf[  p] = r[1];
}

__attribute__((always_inline)) void
fft_radix2(
	__local float2 *buf, float2 *r,
	int p, int i, int t, int twiddle)
{
	int k = i & (p-1);

	fft_radix2_load(buf, r, i, t);

	if (twiddle)
		fft_radix2_twiddle(r, k, p);

	fft_radix2_exec(r);

	barrier(CLK_LOCAL_MEM_FENCE);

	fft_radix2_store(buf, r, i, k, p);

	barrier(CLK_LOCAL_MEM_FENCE);
}


/* FFT radix 4 */

__attribute__((always_inline)) void
fft_radix4_exec(float2 *r)
{
	/* In-place DFT4 */
	dft4(&r[0], &r[1], &r[2], &r[3]);
}

__attribute__((always_inline)) void
fft_radix4_twiddle(float2 *r, int k, int p)
{
	float alpha = -M_PIf * (float)k / (float)(2*p);

	r[1] = twiddle(r[1],1,alpha);
	r[2] = twiddle(r[2],2,alpha);
	r[3] = twiddle(r[3],3,alpha);
}

__attribute__((always_inline)) void
fft_radix4_load(__local float2 *buf, float2 *r, int i, int t)
{
	buf += i;

	r[0] = buf[  0];
	r[1] = buf[  t];
	r[2] = buf[2*t];
	r[3] = buf[3*t];
}

__attribute__((always_inline)) void
fft_radix4_store(__local float2 *buf, float2 *r, int i, int k, int p)
{
	int j = ((i-k)<<2) + k;

	buf += j;

	buf[  0] = r[0];
	buf[  p] = r[2];
	buf[2*p] = r[1];
	buf[3*p] = r[3];
}

__attribute__((always_inline)) void
fft_radix4(
	__local float2 *buf, float2 *r,
	int p, int i, int t, int twiddle)
{
	int k = i & (p-1);

	fft_radix4_load(buf, r, i, t);

	if (twiddle)
		fft_radix4_twiddle(r, k, p);

	fft_radix4_exec(r);

	barrier(CLK_LOCAL_MEM_FENCE);

	fft_radix4_store(buf, r, i, k, p);

	barrier(CLK_LOCAL_MEM_FENCE);
}


/* FFT radix 8 */

__attribute__((always_inline)) void
fft_radix8_exec(float2 *r)
{
	/* In-place DFT8 */
	dft8(&r[0], &r[1], &r[2], &r[3], &r[4], &r[5], &r[6], &r[7]);
}

__attribute__((always_inline)) void
fft_radix8_twiddle(float2 *r, int k, int p)
{
	float alpha = -M_PIf * (float)k / (float)(4*p);

	r[1] = twiddle(r[1], 1, alpha);
	r[2] = twiddle(r[2], 2, alpha);
	r[3] = twiddle(r[3], 3, alpha);
	r[4] = twiddle(r[4], 4, alpha);
	r[5] = twiddle(r[5], 5, alpha);
	r[6] = twiddle(r[6], 6, alpha);
	r[7] = twiddle(r[7], 7, alpha);
}

__attribute__((always_inline)) void
fft_radix8_load(__local float2 *buf, float2 *r, int i, int t)
{
	buf += i;

	r[0] = buf[  0];
	r[1] = buf[  t];
	r[2] = buf[2*t];
	r[3] = buf[3*t];
	r[4] = buf[4*t];
	r[5] = buf[5*t];
	r[6] = buf[6*t];
	r[7] = buf[7*t];
}

__attribute__((always_inline)) void
fft_radix8_store(__local float2 *buf, float2 *r, int i, int k, int p)
{
	int j = ((i-k)<<3) + k;

	buf += j;

	buf[  0] = r[0];
	buf[  p] = r[4];
	buf[2*p] = r[2];
	buf[3*p] = r[6];
	buf[4*p] = r[1];
	buf[5*p] = r[5];
	buf[6*p] = r[3];
	buf[7*p] = r[7];
}

__attribute__((always_inline)) void
fft_radix8(
	__local float2 *buf, float2 *r,
	int p, int i, int t, int twiddle)
{
	int k = i & (p-1);

	fft_radix8_load(buf, r, i, t);

	if (twiddle)
		fft_radix8_twiddle(r, k, p);

	fft_radix8_exec(r);

	barrier(CLK_LOCAL_MEM_FENCE);

	fft_radix8_store(buf, r, i, k, p);

	barrier(CLK_LOCAL_MEM_FENCE);
}


/* ------------------------------------------------------------------------ */
/* FFT kernels                                                              */
/* ------------------------------------------------------------------------ */

__kernel void fft1D_512(
	__global   const float2 *input,
	__global         float2 *output,
	__constant const float  *win)
{
#define N 512
#define WG_SIZE (N / 8)

	__local float2 buf[N];

	float2 r[8];
	int lid = get_local_id(0);
	int i;

	/* Adjust ptr for batch */
	input  += N * get_global_id(1);
	output += N * get_global_id(1);

	/* Global load & window apply */
	for (i=lid; i<N; i+=WG_SIZE)
		buf[i] = input[i] * win[i];

	/* 1st pass: 1 * Radix-8 */
	fft_radix8(buf, r,  1, lid, WG_SIZE, 0);

	/* 2nd pass: 1 * Radix-8 */
	fft_radix8(buf, r,  8, lid, WG_SIZE, 1);

	/* 3rd pass: 1 * Radix-8 */
	fft_radix8(buf, r, 64, lid, WG_SIZE, 1);

	/* Global store */
	for (i=0; i<8; i++)
		output[i*WG_SIZE+lid] = buf[i*WG_SIZE+lid];

#undef WG_SIZE
#undef N
}


__kernel void fft1D_1024(
	__global   const float2 *input,
	__global         float2 *output,
	__constant const float  *win)
{
#define N 1024
#define WG_SIZE (N / 8)

	__local float2 buf[N];

	float2 r[8];
	int lid = get_local_id(0);
	int i;

	/* Adjust ptr for batch */
	input  += N * get_global_id(1);
	output += N * get_global_id(1);

	/* Global load & window apply */
	for (i=lid; i<N; i+=WG_SIZE)
		buf[i] = input[i] * win[i];

	/* 1st pass: 1 * Radix-8 */
	fft_radix8(buf, r,  1, lid, WG_SIZE, 0);

	/* 2nd pass: 1 * Radix-8 */
	fft_radix8(buf, r,  8, lid, WG_SIZE, 1);

	/* 3rd pass: 1 * Radix-8 */
	fft_radix8(buf, r, 64, lid, WG_SIZE, 1);

	/* 4th pass: 4 * Radix-2 */
	{
		const int p = 512;
		const int i = lid << 2;
		const int t = WG_SIZE << 2;
		const int k = i;

		fft_radix2_load(buf, r+0, i+0, t);
		fft_radix2_load(buf, r+2, i+1, t);
		fft_radix2_load(buf, r+4, i+2, t);
		fft_radix2_load(buf, r+6, i+3, t);

		fft_radix2_twiddle(r+0, k+0, p);
		fft_radix2_twiddle(r+2, k+1, p);
		fft_radix2_twiddle(r+4, k+2, p);
		fft_radix2_twiddle(r+6, k+3, p);

		fft_radix2_exec(r+0);
		fft_radix2_exec(r+2);
		fft_radix2_exec(r+4);
		fft_radix2_exec(r+6);

		barrier(CLK_LOCAL_MEM_FENCE);

		fft_radix2_store(buf, r+0, i+0, k+0, p);
		fft_radix2_store(buf, r+2, i+1, k+1, p);
		fft_radix2_store(buf, r+4, i+2, k+2, p);
		fft_radix2_store(buf, r+6, i+3, k+3, p);

		barrier(CLK_LOCAL_MEM_FENCE);
	}

	/* Global store */
	for (i=0; i<8; i++)
		output[i*WG_SIZE+lid] = buf[i*WG_SIZE+lid];

#undef WG_SIZE
#undef N
}

/* vim: set syntax=c: */