1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/*!\file gr3_mc.c
*
* Optimized OpenMP implementation of the marching cubes algorithm.
*
* This code is based on Paul Bourke's Marching Cubes implementation
* (http://paulbourke.net/geometry/polygonise/)
*
* Creates an indexed mesh to reduce the number of vertices to calculate.
* This is done by caching generated vertices depending on their location.
* Multiple threads create independent meshes.
* Caches values between adjacent cubes.
*
* Fabian Beule
* 2014-02-10
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "gr3.h"
#include "gr3_mc_data.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#define ABS(x) ((x) < 0 ? -(x) : (x))
#define INDEX(x, y, z) ((x)*mcdata.stride[0] + (y)*mcdata.stride[1] + (z)*mcdata.stride[2])
#define IDX2D(y, z) ((y)*mcdata.dim[2] + (z))
/* speedup does not grow much with a high number of threads */
#define THREADLIMIT 16
/* for smaller function headers */
typedef struct
{
const GR3_MC_DTYPE *data;
GR3_MC_DTYPE isolevel;
int dim[3];
int stride[3];
double step[3];
double offset[3];
} mcdata_t;
/* calculate the gradient via difference qoutient */
static gr3_coord_t getgrad(mcdata_t mcdata, int x, int y, int z)
{
int v[3];
int neigh[3][2];
int i;
gr3_coord_t n;
v[0] = x;
v[1] = y;
v[2] = z;
for (i = 0; i < 3; i++)
{
if (v[i] > 0)
neigh[i][0] = v[i] - 1;
else
neigh[i][0] = v[i];
if (v[i] < mcdata.dim[i] - 1)
neigh[i][1] = v[i] + 1;
else
neigh[i][1] = v[i];
}
n.x = (float)(mcdata.data[INDEX(neigh[0][1], y, z)] - mcdata.data[INDEX(neigh[0][0], y, z)]) /
(neigh[0][1] - neigh[0][0]) / mcdata.step[0];
n.y = (float)(mcdata.data[INDEX(x, neigh[1][1], z)] - mcdata.data[INDEX(x, neigh[1][0], z)]) /
(neigh[1][1] - neigh[1][0]) / mcdata.step[1];
n.z = (float)(mcdata.data[INDEX(x, y, neigh[2][1])] - mcdata.data[INDEX(x, y, neigh[2][0])]) /
(neigh[2][1] - neigh[2][0]) / mcdata.step[2];
return n;
}
/* interpolate points and calulate normals */
static void interpolate(mcdata_t mcdata, int px, int py, int pz, GR3_MC_DTYPE v1, int qx, int qy, int qz,
GR3_MC_DTYPE v2, gr3_coord_t *p, gr3_coord_t *n)
{
double mu;
gr3_coord_t n1, n2;
double norm;
if (ABS(mcdata.isolevel - v1) < 0.00001)
mu = 0.0;
else if (ABS(mcdata.isolevel - v2) < 0.00001)
mu = 1.0;
else if (ABS(v1 - v2) < 0.00001)
mu = 0.5;
else
mu = 1.0 * (mcdata.isolevel - v1) / (v2 - v1);
p->x = (px + mu * (qx - px)) * mcdata.step[0] + mcdata.offset[0];
p->y = (py + mu * (qy - py)) * mcdata.step[1] + mcdata.offset[1];
p->z = (pz + mu * (qz - pz)) * mcdata.step[2] + mcdata.offset[2];
n1 = getgrad(mcdata, px, py, pz);
n2 = getgrad(mcdata, qx, qy, qz);
n->x = -(n1.x + mu * (n2.x - n1.x));
n->y = -(n1.y + mu * (n2.y - n1.y));
n->z = -(n1.z + mu * (n2.z - n1.z));
norm = sqrt(n->x * n->x + n->y * n->y + n->z * n->z);
if (norm > 0.0)
{
n->x /= norm;
n->y /= norm;
n->z /= norm;
}
}
/*!
* marching cubes algorithm for one x-layer.
* created vertices are cached between calls using vindex.
* vindex associates the intersected edge with the vertex index.
* the edge is identified by its location (low, high), direction (x, y, z)
* and coordinates (py, pz) of its starting point.
* direction and location are the first index:
* (x, y_low, z_low, y_high, z_high) (see mc_edgeprop)
* second index is py * mcdata.dim[1] + pz.
* py and pz are the coordinates of the lower one of both edge vertices
*/
static void layer(mcdata_t mcdata, int x, int **vindex, unsigned int *num_vertices, gr3_coord_t **vertices,
gr3_coord_t **normals, unsigned int *vertcapacity, unsigned int *num_faces, unsigned int **indices,
unsigned int *facecapacity)
{
int i, j;
int y, z;
int cubeindex;
GR3_MC_DTYPE cubeval[8]; /* also cache between adjacent cubes */
for (y = 0; y < mcdata.dim[1] - 1; y++)
{
/* init z-cache */
for (i = 0; i < 4; i++)
{
int zi = mc_zvertices[0][i];
cubeval[mc_zvertices[1][i]] =
mcdata.data[INDEX(x + mc_cubeverts[zi][0], y + mc_cubeverts[zi][1], 0 + mc_cubeverts[zi][2])];
}
for (z = 0; z < mcdata.dim[2] - 1; z++)
{
cubeindex = 0;
/* shift old values (z-cache) */
for (i = 0; i < 4; i++)
{
int zi = mc_zvertices[0][i];
cubeval[zi] = cubeval[mc_zvertices[1][i]];
if (cubeval[zi] < mcdata.isolevel)
{
cubeindex |= 1 << zi;
}
}
/* read new cube values */
for (i = 0; i < 4; i++)
{
int zi = mc_zvertices[1][i];
cubeval[zi] =
mcdata.data[INDEX(x + mc_cubeverts[zi][0], y + mc_cubeverts[zi][1], z + mc_cubeverts[zi][2])];
if (cubeval[zi] < mcdata.isolevel)
{
cubeindex |= 1 << zi;
}
}
if (cubeindex != 0 && cubeindex != 255)
{
/* create triangles */
for (i = 0; i < mc_tricount[cubeindex]; i++)
{
if (*facecapacity <= *num_faces)
{
(*facecapacity) = (unsigned int)(*num_faces * 1.5) + 50;
*indices = realloc(*indices, (*facecapacity) * 3 * sizeof(int));
}
/* create triangle vertices */
for (j = 0; j < 3; j++)
{
int trival = mc_tritable[cubeindex][i * 3 + j];
const int *edge = mc_cubeedges[trival];
int dir = mc_edgeprop[trival];
int px = x + mc_cubeverts[edge[0]][0];
int py = y + mc_cubeverts[edge[0]][1];
int pz = z + mc_cubeverts[edge[0]][2];
/* lookup if vertex already exists */
int node = vindex[dir][IDX2D(py, pz)];
if (node < 0)
{
/* it does not, create it */
GR3_MC_DTYPE v1 = cubeval[edge[0]];
GR3_MC_DTYPE v2 = cubeval[edge[1]];
if (*vertcapacity <= *num_vertices)
{
(*vertcapacity) = (unsigned int)(*num_vertices * 1.5) + 50;
*vertices = realloc(*vertices, (*vertcapacity) * sizeof(gr3_coord_t));
*normals = realloc(*normals, (*vertcapacity) * sizeof(gr3_coord_t));
}
node = *num_vertices;
interpolate(mcdata, px, py, pz, v1, x + mc_cubeverts[edge[1]][0],
y + mc_cubeverts[edge[1]][1], z + mc_cubeverts[edge[1]][2], v2, *vertices + node,
*normals + node);
vindex[dir][IDX2D(py, pz)] = node;
(*num_vertices)++;
}
/* add vertex index to the element array */
(*indices)[*num_faces * 3 + j] = node;
}
(*num_faces)++;
}
}
}
}
}
/*!
* handle consecutive calls to layer
*/
static void layerblock(mcdata_t mcdata, int from, int to, unsigned int *num_vertices, gr3_coord_t **vertices,
gr3_coord_t **normals, unsigned int *num_faces, unsigned int **faces)
{
int x;
int y;
int z;
unsigned int vertcapacity;
unsigned int facecapacity;
/* cache for the vertex indices of the x-layer
* [x, y_bot, z_bot, y_top, z_top] */
int *vindex[5], *ntmp;
*num_vertices = 0;
vertcapacity = 0;
*vertices = NULL;
*normals = NULL;
*num_faces = 0;
facecapacity = 0;
*faces = NULL;
vindex[0] = malloc(5 * mcdata.dim[1] * mcdata.dim[2] * sizeof(int));
vindex[1] = vindex[0] + mcdata.dim[1] * mcdata.dim[2];
vindex[2] = vindex[0] + 2 * mcdata.dim[1] * mcdata.dim[2];
vindex[3] = vindex[0] + 3 * mcdata.dim[1] * mcdata.dim[2];
vindex[4] = vindex[0] + 4 * mcdata.dim[1] * mcdata.dim[2];
for (y = 0; y < mcdata.dim[1]; y++)
{
for (z = 0; z < mcdata.dim[2]; z++)
{
vindex[0][IDX2D(y, z)] = -1;
vindex[3][IDX2D(y, z)] = -1;
vindex[4][IDX2D(y, z)] = -1;
}
}
/*
* iterate layer-by-layer through the data
* create an indexed mesh
* indices are cached in vindex[direction of the edge][y, z]
* the top cache becomes the bottom in the next iterarion
*/
for (x = from; x < to; x++)
{
ntmp = vindex[1];
vindex[1] = vindex[3];
vindex[3] = ntmp;
ntmp = vindex[2];
vindex[2] = vindex[4];
vindex[4] = ntmp;
for (y = 0; y < mcdata.dim[1]; y++)
{
for (z = 0; z < mcdata.dim[2]; z++)
{
vindex[0][IDX2D(y, z)] = -1;
vindex[3][IDX2D(y, z)] = -1;
vindex[4][IDX2D(y, z)] = -1;
}
}
layer(mcdata, x, vindex, num_vertices, vertices, normals, &vertcapacity, num_faces, faces, &facecapacity);
}
free(vindex[0]);
}
/*!
* Create an isosurface (as indexed mesh) from voxel data
* with the marching cubes algorithm.
* This function manages the parallelization:
* Divide the data into blocks along the x-axis. Allocate memory,
* call layerblock and merge the individual meshes into a single one.
*
* \param [in] data the volume (voxel) data
* \param [in] isolevel value where the isosurface will be extracted
* \param [in] dim_x number of elements in x-direction
* \param [in] dim_y number of elements in y-direction
* \param [in] dim_z number of elements in z-direction
* \param [in] stride_x number of elements to step when traversing
* the data in x-direction
* \param [in] stride_y number of elements to step when traversing
* the data in y-direction
* \param [in] stride_z number of elements to step when traversing
* the data in z-direction
* \param [in] step_x distance between the voxels in x-direction
* \param [in] step_y distance between the voxels in y-direction
* \param [in] step_z distance between the voxels in z-direction
* \param [in] offset_x coordinate origin
* \param [in] offset_y coordinate origin
* \param [in] offset_z coordinate origin
* \param [out] num_vertices number of vertices created
* \param [out] vertices array of vertex coordinates
* \param [out] normals array of vertex normal vectors
* \param [out] num_indices number of indices created
* (3 times the number of triangles)
* \param [out] indices array of vertex indices that make the triangles
*/
GR3API void gr3_triangulateindexed(const GR3_MC_DTYPE *data, GR3_MC_DTYPE isolevel, unsigned int dim_x,
unsigned int dim_y, unsigned int dim_z, unsigned int stride_x, unsigned int stride_y,
unsigned int stride_z, double step_x, double step_y, double step_z, double offset_x,
double offset_y, double offset_z, unsigned int *num_vertices, gr3_coord_t **vertices,
gr3_coord_t **normals, unsigned int *num_indices, unsigned int **indices)
{
int num_threads;
unsigned int num_faces;
unsigned int *num_t_vertices, *num_t_faces, **t_faces;
gr3_coord_t **t_vertices, **t_normals;
unsigned int *vertblock, *faceblock;
mcdata_t mcdata;
#if defined(_OPENMP) && defined(THREADLIMIT)
int max_threads;
max_threads = omp_get_max_threads();
if (max_threads > THREADLIMIT) omp_set_num_threads(THREADLIMIT);
#endif
if (stride_x == 0) stride_x = dim_z * dim_y;
if (stride_y == 0) stride_y = dim_z;
if (stride_z == 0) stride_z = 1;
mcdata.data = data;
mcdata.isolevel = isolevel;
mcdata.dim[0] = dim_x;
mcdata.dim[1] = dim_y;
mcdata.dim[2] = dim_z;
mcdata.stride[0] = stride_x;
mcdata.stride[1] = stride_y;
mcdata.stride[2] = stride_z;
mcdata.step[0] = step_x;
mcdata.step[1] = step_y;
mcdata.step[2] = step_z;
mcdata.offset[0] = offset_x;
mcdata.offset[1] = offset_y;
mcdata.offset[2] = offset_z;
*num_vertices = 0;
*vertices = NULL;
*normals = NULL;
*num_indices = 0;
*indices = NULL;
#ifdef _OPENMP
#pragma omp parallel default(none) \
shared(num_threads, num_t_vertices, t_vertices, t_normals, num_t_faces, t_faces, mcdata, vertblock, faceblock, \
num_vertices, num_faces, vertices, normals, indices)
#endif
{
int thread_id;
unsigned int from, to;
unsigned int i;
#ifdef _OPENMP
#pragma omp single
#endif
{
/* allocate temporary memory for each thread */
#ifdef _OPENMP
num_threads = omp_get_num_threads();
#else
num_threads = 1;
#endif
num_t_vertices = malloc(num_threads * sizeof(unsigned int));
t_vertices = malloc(num_threads * sizeof(gr3_coord_t *));
t_normals = malloc(num_threads * sizeof(gr3_coord_t *));
num_t_faces = malloc(num_threads * sizeof(unsigned int));
t_faces = malloc(num_threads * sizeof(unsigned int *));
}
/* create a mesh per thread */
#ifdef _OPENMP
thread_id = omp_get_thread_num();
#else
thread_id = 0;
#endif
from = thread_id * (mcdata.dim[0] - 1) / num_threads;
to = (thread_id + 1) * (mcdata.dim[0] - 1) / num_threads;
num_t_vertices[thread_id] = 0;
t_vertices[thread_id] = NULL;
t_normals[thread_id] = NULL;
num_t_faces[thread_id] = 0;
t_faces[thread_id] = NULL;
layerblock(mcdata, from, to, num_t_vertices + thread_id, t_vertices + thread_id, t_normals + thread_id,
num_t_faces + thread_id, t_faces + thread_id);
#ifdef _OPENMP
#pragma omp barrier
#pragma omp single
#endif
{
/* calculate beginning indices of thread blocks */
vertblock = malloc((num_threads + 1) * sizeof(unsigned int));
vertblock[0] = 0;
faceblock = malloc((num_threads + 1) * sizeof(unsigned int));
faceblock[0] = 0;
for (i = 0; i < (unsigned int)num_threads; i++)
{
vertblock[i + 1] = vertblock[i] + num_t_vertices[i];
faceblock[i + 1] = faceblock[i] + num_t_faces[i];
}
*num_vertices = vertblock[num_threads];
num_faces = faceblock[num_threads];
*vertices = realloc(*vertices, *num_vertices * sizeof(gr3_coord_t));
*normals = realloc(*normals, *num_vertices * sizeof(gr3_coord_t));
*indices = realloc(*indices, num_faces * 3 * sizeof(unsigned int));
}
/* copy thread meshes into the arrays */
memmove(*vertices + vertblock[thread_id], t_vertices[thread_id], num_t_vertices[thread_id] * sizeof(gr3_coord_t));
memmove(*normals + vertblock[thread_id], t_normals[thread_id], num_t_vertices[thread_id] * sizeof(gr3_coord_t));
/* translate thread indices to global indices */
for (i = 0; i < num_t_faces[thread_id]; i++)
{
(*indices)[(faceblock[thread_id] + i) * 3 + 0] = t_faces[thread_id][i * 3 + 0] + vertblock[thread_id];
(*indices)[(faceblock[thread_id] + i) * 3 + 1] = t_faces[thread_id][i * 3 + 1] + vertblock[thread_id];
(*indices)[(faceblock[thread_id] + i) * 3 + 2] = t_faces[thread_id][i * 3 + 2] + vertblock[thread_id];
}
free(t_vertices[thread_id]);
free(t_normals[thread_id]);
free(t_faces[thread_id]);
}
free(faceblock);
free(vertblock);
free(t_faces);
free(num_t_faces);
free(t_normals);
free(t_vertices);
free(num_t_vertices);
*num_indices = num_faces * 3;
#if defined(_OPENMP) && defined(THREADLIMIT)
omp_set_num_threads(max_threads);
#endif
}
/*!
* Create an isosurface (as mesh) from voxel data
* with the marching cubes algorithm.
* This function calls gr3_triangulateindexed and copies the values.
*
* \param [in] data the volume (voxel) data
* \param [in] isolevel value where the isosurface will be extracted
* \param [in] dim_x number of elements in x-direction
* \param [in] dim_y number of elements in y-direction
* \param [in] dim_z number of elements in z-direction
* \param [in] stride_x number of elements to step when traversing
* the data in x-direction
* \param [in] stride_y number of elements to step when traversing
* the data in y-direction
* \param [in] stride_z number of elements to step when traversing
* the data in z-direction
* \param [in] step_x distance between the voxels in x-direction
* \param [in] step_y distance between the voxels in y-direction
* \param [in] step_z distance between the voxels in z-direction
* \param [in] offset_x coordinate origin
* \param [in] offset_y coordinate origin
* \param [in] offset_z coordinate origin
* \param [out] triangles_p array of triangle data
*
* \returns the number of triangles created
*/
GR3API unsigned int gr3_triangulate(const GR3_MC_DTYPE *data, GR3_MC_DTYPE isolevel, unsigned int dim_x,
unsigned int dim_y, unsigned int dim_z, unsigned int stride_x,
unsigned int stride_y, unsigned int stride_z, double step_x, double step_y,
double step_z, double offset_x, double offset_y, double offset_z,
gr3_triangle_t **triangles_p)
{
unsigned int num_vertices;
gr3_coord_t *vertices, *normals;
unsigned int num_indices;
unsigned int *indices;
unsigned int i, j;
#if defined(_OPENMP) && defined(THREADLIMIT)
int max_threads;
max_threads = omp_get_max_threads();
if (max_threads > THREADLIMIT) omp_set_num_threads(THREADLIMIT);
#endif
gr3_triangulateindexed(data, isolevel, dim_x, dim_y, dim_z, stride_x, stride_y, stride_z, step_x, step_y, step_z,
offset_x, offset_y, offset_z, &num_vertices, &vertices, &normals, &num_indices, &indices);
*triangles_p = malloc(num_indices / 3 * sizeof(gr3_triangle_t));
#ifdef _OPENMP
#pragma omp parallel for default(none) private(j) shared(num_indices, triangles_p, indices, vertices, normals)
#endif
for (i = 0; i < num_indices / 3; i++)
{
for (j = 0; j < 3; j++)
{
(*triangles_p)[i].vertex[j] = vertices[indices[i * 3 + j]];
(*triangles_p)[i].normal[j] = normals[indices[i * 3 + j]];
}
}
free(vertices);
free(normals);
free(indices);
#if defined(_OPENMP) && defined(THREADLIMIT)
omp_set_num_threads(max_threads);
#endif
return num_indices / 3;
}
|