1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
|
/* -*- c++ -*- */
/*
* Copyright 2013-2017,2020 Tom McDermott, N5EG
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
//
// Hermes Proxy
//
// Encapsulates the Hermes module for access/control by GNU Radio.
// Used by the HermesNB (Narrow Band) and HermesWB (Wide Band) modules
// that provide Hermes sink and source to GNU Radio.
//
// Data+Control --> 2 x USB-like 512-byte frames.
// 2 x USB-like frames --> UDP IP-packet.
// UDP IP packet --> Ethernet frame --> Send to Hermes.
// Reverse happens for data from Hermes.
// See the HPSDR documentation for USB and Ethernet frame formats.
//
// Uses the Metis Ethernet interface module to send/receive Ethernet
// frames to/from Hermes.
//
// HermesNB uses this proxy to convert raw data and control flags
// and send/receive them to Hermes.
//
// Version: December 15, 2012
// Updates: * Make Clock Source and AlexControl programmable from GUI
// * July 10, 2013 - update for GRC 3.7
// * December 4, 2013 - additional parameters in constructor
// * March 13, 2014 - flip transmit I and Q symbols, due to FPGA
// reversing them. Set TxDrive default to 0 (rather than 255).
// * July 2017 - increase number of receivers to 8. Hermes
// supports 4, Red Pitaya supports 6. The protocol spec lists 8,
// but do not know of any hardware that yet supports 8. The
// constructor is getting unwieldy, but XML contrains what can
// be passed from GRC to the constructor to simple types.
//
#include <gnuradio/io_signature.h>
#include "HermesProxy.h"
#include "metis.h"
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <list>
// Build the scheduler vectors for larger numbers of receivers
//
// These involve non-integer ratios, so the queue events are spread relatively
// evenly while fitting in the exact number of events.
std::vector<int> * schedulevector[20];
// Three receivers - 25 Tx queue events per set of 63, 126, 252, 504 received frames
std::vector<int> L3_48 = { 0, 3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 28, 30,
33, 35, 38, 40, 43, 45, 48, 50, 53, 55, 58, 60 }; // 25 frames per 63
std::vector<int> L3_96 = { 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 59,
64, 69, 74, 79, 84, 89, 94, 98, 103, 108, 113, 118, 122 }; // 25 frames per 126
std::vector<int> L3_192 = { 2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110,
118, 128, 138, 148, 158, 168, 178, 188, 196, 206, 216, 226, 236, 244 }; // 25 frames per 252
std::vector<int> L3_384 = { 4, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220,
236, 256, 276, 296, 316, 336, 356, 376, 392, 412, 432, 452, 472, 488 }; // 25 frames per 504
// Four receivers - 19 Tx queue events per set of 63, 126, 252, 504 received frames
std::vector<int> L4_48 = { 3, 6, 10, 13, 16, 20, 23, 26, 30, 33, 36, 40, 43,
46, 50, 53, 56, 59, 62 }; // 19 frames per 63
std::vector<int> L4_96 = { 6, 12, 20, 26, 32, 40, 46, 52, 60, 66, 72, 80, 86,
92, 100, 106, 112, 118, 124 }; // 19 frames per 126
std::vector<int> L4_192 = { 12, 24, 40, 52, 64, 80, 92, 104, 120, 132, 144,
160, 172, 184, 200, 212, 224, 236, 248 }; // 19 frames per 252
std::vector<int> L4_384 = { 24, 48, 80, 104, 128, 160, 184, 208, 240, 264, 288,
320, 344, 368, 400, 424, 448, 472, 496 }; // 19 frames per 504
// Five receivers - 15 Tx queue events per set of 63, 126, 252, 504 received frames
std::vector<int> L5_48 = { 4, 8, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 62 }; // 15 frames per 63
std::vector<int> L5_96 = { 8, 16, 24, 32, 42, 50, 58, 66, 74, 84, 92, 100, 108, 116, 124 }; // 15 frames per 126
std::vector<int> L5_192 = { 16, 32, 48, 64, 84, 100, 116, 132, 148, 168, 184, 200, 216, 232, 248 }; // 15 frames per 252
std::vector<int> L5_384 = { 32, 64, 96, 128, 168, 200, 232, 264, 296, 336, 368, 400, 432, 464, 496 }; // 15 frames per 504
// Six receivers - 13 Tx queue events per set of 63, 126, 252, 504 received frames
std::vector<int> L6_48 = { 5, 10, 15, 20, 24, 29, 34, 39, 44, 48, 53, 58, 62 }; // 13 frames per 63
std::vector<int> L6_96 = { 10, 20, 30, 40, 48, 58, 68, 78, 88, 96, 106, 116, 124 }; // 13 frames per 126
std::vector<int> L6_192 = { 20, 40, 60, 80, 96, 116, 136, 156, 176, 192, 212, 232, 248 }; // 13 frames per 252
std::vector<int> L6_384 = { 40, 80, 120, 160, 192, 232, 272, 312, 352, 384, 424, 464, 496 }; // 13 frames per 504
// Seven receivers - 11 Tx queue events per set of 63, 126, 252, 504 received frames
std::vector<int> L7_48 = { 6, 12, 17, 23, 29, 34, 40, 45, 51, 57, 62 }; // 11 frames per 63
std::vector<int> L7_96 = { 12, 24, 34, 46, 58, 68, 80, 90, 102, 114, 124 }; // 11 frames per 126
std::vector<int> L7_192 = { 24, 48, 68, 92, 116, 136, 160, 180, 204, 228, 248 }; // 11 frames per 252
std::vector<int> L7_384 = { 48, 96, 136, 184, 232, 272, 320, 360, 408, 456, 496 }; // 11 frames per 504
HermesProxy::HermesProxy(int RxFreq0, int RxFreq1, int RxFreq2, int RxFreq3,
int RxFreq4, int RxFreq5, int RxFreq6, int RxFreq7,
int TxFreq, int RxPre,
int PTTModeSel, int PTTTxMute, int PTTRxMute,
unsigned char TxDr, int RxSmp, const char* Intfc,
const char * ClkS, int AlexRA, int AlexTA,
int AlexHPF, int AlexLPF, int Verb, int NumRx,
const char* MACAddr) // constructor
{
schedulevector[0] = &L3_48; // Build the array of schedule vector pointers
schedulevector[1] = &L3_96;
schedulevector[2] = &L3_192;
schedulevector[3] = &L3_384;
schedulevector[4] = &L4_48;
schedulevector[5] = &L4_96;
schedulevector[6] = &L4_192;
schedulevector[7] = &L4_384;
schedulevector[8] = &L5_48;
schedulevector[9] = &L5_96;
schedulevector[10] = &L5_192;
schedulevector[11] = &L5_384;
schedulevector[12] = &L6_48;
schedulevector[13] = &L6_96;
schedulevector[14] = &L6_192;
schedulevector[15] = &L6_384;
schedulevector[16] = &L7_48;
schedulevector[17] = &L7_96;
schedulevector[18] = &L7_192;
schedulevector[19] = &L7_384;
//pthread_mutex_init (&mutexRPG, NULL);
//pthread_mutex_init (&mutexGPT, NULL);
//
// Notes in case needed...
//
// pthread_mutex_lock(&mutex) - acquire a lock on the specified mutex variable. If the
// mutex is already locked by another thread, this call will block the calling thread
// until the mutex is unlocked.
// pthread_mutex_unlock(&mutex) - unlock a mutex variable. An error is returned if mutex
// is already unlocked or owned by another thread.
// pthread_mutex_trylock(&mutex) - attempt to lock a mutex or will return error code if
// busy. Useful for preventing deadlock conditions. RETURN VALUES
// On success, pthread_mutex_trylock() returns 0. On error, one of the following
// values is returned:
// EBUSY The mutex is already locked.
// EINVAL mutex is not an initialized mutex.
// EFAULT mutex is an invalid pointer.
RxSampleRate = RxSmp;
strcpy(interface, Intfc); // Ethernet interface to use (defaults to eth0)
NumReceivers = NumRx;
unsigned int cs; // Convert ClockSource strings to unsigned, then intitalize
sscanf(ClkS, "%x", &cs);
ClockSource = (cs & 0xFC);
// Initialize the Alex control registers.
AlexRxAnt = AlexRA; // Select Alex Receive Antenna or from T/R relay
AlexTxAnt = AlexTA; // Select Alex Tx Antenna
AlexRxHPF = AlexHPF; // Select Alex Receive High Pass Filter
AlexTxLPF = AlexLPF; // Select Alex Transmit Low Pass Filter
Verbose = Verb; // Turn Verbose mode on/off
for (int i=0; i<18; i++)
mactarget[i] = toupper(MACAddr[i]); // Copy the requested MAC target address
Receive0Frequency = (unsigned)RxFreq0;
Receive1Frequency = (unsigned)RxFreq1;
Receive2Frequency = (unsigned)RxFreq2;
Receive3Frequency = (unsigned)RxFreq3;
Receive4Frequency = (unsigned)RxFreq4;
Receive5Frequency = (unsigned)RxFreq5;
Receive6Frequency = (unsigned)RxFreq6;
Receive7Frequency = (unsigned)RxFreq7;
TransmitFrequency = (unsigned)TxFreq; // initialize frequencies
TxDrive = TxDr; // default to (almost) off
PTTMode = PTTModeSel;
RxPreamp = (bool)RxPre;
PTTOffMutesTx = (bool)PTTTxMute; // PTT Off mutes the transmitter
PTTOnMutesRx = (bool)PTTRxMute; // PTT On mutes receiver
ADCdither = false;
ADCrandom = false;
RxAtten = 0; // Hermes V2.0
Duplex = true; // Allows TxF to program separately from RxF
TxStop = false;
RxWriteCounter = 0; //
RxReadCounter = 0; // These control the Rx buffers to Gnuradio
RxWriteFill = 0; //
TxWriteCounter = 0; //
TxReadCounter = 0; // These control the Tx buffers to Hermes
TxControlCycler = 0; //
TxFrameIdleCount = 0; //
LostRxBufCount = 0; //
TotalRxBufCount = 0; //
LostTxBufCount = 0; //
TotalTxBufCount = 0; // diagnostics
CorruptRxCount = 0; //
LostEthernetRx = 0; //
CurrentEthSeqNum = 0; //
TxHoldOff = 0; // initialize transmit hold off counter
try
{
// allocate the receiver buffers
for(int i=0; i<NUMRXIQBUFS; i++)
RxIQBuf[i] = new float[RXBUFSIZE];
// allocate the transmit buffers
for(int i=0; i<NUMTXBUFS; i++)
TxBuf[i] = new unsigned char[TXBUFSIZE];
}
catch(std::bad_alloc& ba)
{
fprintf(stderr, "\nFATAL: unable to allocate memory for buffers.\n %s\n", ba.what());
throw;
}
metis_discover((const char *)(interface));
USBRowCount[0] = 63; // Number of Rows of samples per Rx Input
USBRowCount[1] = 36; // USB frame based on number of receivers 1..8
USBRowCount[2] = 25;
USBRowCount[3] = 19;
USBRowCount[4] = 15;
USBRowCount[5] = 13;
USBRowCount[6] = 11;
USBRowCount[7] = 10; // Eight receivers
//
// If there is no specified MAC address (i.e. wildcard, or anything less than 17
// characters, then just grab the first Hermes/Metis that
// responds to discovery. If there is a specific MAC address specified, then wait
// until it appears in the Metis cards table, and set the metis table index to match.
// The string is HH:HH:HH:HH:HH:HH\0 formated, where HH is a 2-digital Hexidecimal number
// uppercase, example: 04:7F:3D:0F:28:5A
//
metis_entry = 0;
if (strlen(mactarget) != 17) // Not a fully-qualified MAC address, default to first MAC found
{
while (metis_found() == 0)
; // wait until Hermes responds with first discovered MAC
}
else // Search the table for the entry matching requested MAC address
{
bool found = false;
while(!found) // Search for MAC address in the metis_table until the cows come home
for(int i=0; i<metis_found(); i++)
{
if (strcmp(mactarget, metis_mac_address(i)) == 0) // Exact match found
{
metis_entry = i; // Select entry in metis_table
found = true;
break;
}
}
}
metis_receive_stream_control(RxStream_Off, metis_entry); // turn off Hermes -> PC streams
UpdateHermes(); // send specific control registers
// and initialize 1st Tx buffer
// before allowing scheduler to Start
};
HermesProxy::~HermesProxy()
{
fprintf(stderr, "\nLostRxBufCount = %lu TotalRxBufCount = %lu"
" LostTxBufCount = %lu TotalTxBufCount = %lu"
" CorruptRxCount = %lu LostEthernetRx = %lu\n",
LostRxBufCount, TotalRxBufCount, LostTxBufCount,
TotalTxBufCount, CorruptRxCount, LostEthernetRx);
metis_receive_stream_control(RxStream_Off, metis_entry); // stop Hermes data stream
metis_stop_receive_thread(); // stop receive_thread & close socket
for(int i=0; i<NUMTXBUFS; i++)
delete [] TxBuf[i];
for(int i=0; i<NUMRXIQBUFS; i++)
delete [] RxIQBuf[i];
}
void HermesProxy::Stop() // stop ethernet I/O
{
metis_receive_stream_control(RxStream_Off, metis_entry); // stop Hermes Rx data stream
TxStop = true; // stop Tx data to Hermes
};
void HermesProxy::Start() // start rx stream
{
TxStop = false; // allow Tx data to Hermes
metis_receive_stream_control(RxStream_NB_On, metis_entry); // start Hermes Rx data stream
TxHoldOff = true; // Hold off buffers before bursting Tx
};
void HermesProxy::PrintRawBuf(RawBuf_t inbuf) // for debugging
{
fprintf(stderr, "Addr: %p Dump of Raw Buffer\n", inbuf);
for(int row=0; row<4; row++)
{
int addr = row * 16;
fprintf(stderr, "%04X: ", addr);
for(int column=0; column<8; column++)
fprintf(stderr, "%02X:", inbuf[row*16+column]);
fprintf(stderr, "...");
for(int column=8; column<16; column++)
fprintf(stderr, "%02X:", inbuf[row*16+column]);
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
};
// ********** Routines to receive data from Hermes/Metis and give to Gnuradio ****************
void HermesProxy::ReceiveRxIQ(unsigned char * inbuf) // called by metis Rx thread.
{
// look for lost receive packets based on skips in the HPSDR ethernet header
// sequence number.
//PrintRawBuf(inbuf); // include Ethernet header
unsigned int SequenceNum = (unsigned char)(inbuf[4]) << 24;
SequenceNum += (unsigned char)(inbuf[5]) << 16;
SequenceNum += (unsigned char)(inbuf[6]) << 8;
SequenceNum += (unsigned char)(inbuf[7]);
if(SequenceNum > CurrentEthSeqNum + 1)
{
LostEthernetRx += (SequenceNum - CurrentEthSeqNum);
CurrentEthSeqNum = SequenceNum;
}
else
{
if(SequenceNum == CurrentEthSeqNum + 1)
CurrentEthSeqNum++;
}
// Metis Rx thread gives us collection of samples including the Ethernet header
// plus 2 x HPSDR USB frames.
// TODO - Handle Mic audio from Hermes.
// For 1 Rx, the frame comes in with I2 I1 I0 Q2 Q1 Q0 M1 M0 repeating
// starting at location 8 through 511. At total of (512-8)/8 = 63 complex pairs.
// I2 I1 I0 is 24-bit 2's complement format.
// There are two of the USB HPSDR frames in the received ethernet buffer.
// A buffer of 126 complex pairs is about
// 0.3 milliseconds at 384,000 sample rate
// 0.6 milliseconds at 192,000 sample rate
// 2.4 milliseconds at 48,000 sample rate
//
//
// We always allocate one output buffer to unpack every received ethernet frame.
// Each input Ethernet frame contains a different number of I + Q samples as 2's
// complement depending on the number of receivers.
//
// RxWriteCounter - the current Rx buffer we are writing to
// RxWriteFill - #floats we have written to the current Rx buffer (0..255)
// RxReadCounter - the Rx buffer that gnuradio can read
//
inbuf += 8; // skip past Ethernet header
IQBuf_t outbuf; // RxWrite output buffer selector
TotalRxBufCount++;
ScheduleTxFrame(TotalRxBufCount); // Schedule a Tx ethernet frame to Hermes if ready.
// Need to check for both 1st and 2nd USB frames for the status registers.
// Some status come in only in the first, and some only in the second.
// check for proper frame sync
for (int USBFrameOffset = 0; USBFrameOffset<=512; USBFrameOffset += 512)
{
unsigned char s0 = inbuf[0+USBFrameOffset]; // sync register 0
unsigned char s1 = inbuf[1+USBFrameOffset]; // sync register 0
unsigned char s2 = inbuf[2+USBFrameOffset]; // sync register 0
unsigned char c0 = inbuf[3+USBFrameOffset]; // control register 0
unsigned char c1 = inbuf[4+USBFrameOffset]; // control register 1
unsigned char c2 = inbuf[5+USBFrameOffset]; // control register 2
unsigned char c3 = inbuf[6+USBFrameOffset]; // control register 3
unsigned char c4 = inbuf[7+USBFrameOffset]; // control register 4
if(s0 == 0x7f && s1 == 0x7f && s2 == 0x7f)
{
if((c0 & 0xf8) == 0x00) // Overflow and Version
{
// fprintf(stderr, "Reg:0x00 c0:0x%x c1:0x%x c2:0x%x c3:0x%u c4:0x%x\n", c0, c1, c2, c3, c4);
if(c1 & 0x01)
ADCoverload = true;
else
ADCoverload = false;
HermesVersion = c4;
}
if((c0 & 0xf8) == 0x08) //AIN5 and AIN1
{
// fprintf(stderr, "Reg:0x08 c0:0x%x c1:0x%x c2:0x%x c3:0x%u c4:0x%x\n", c0, c1, c2, c3, c4);
AIN5 = (unsigned int)c1 * 256 + (unsigned int)c2;
AIN1 = (unsigned int)c3 * 256 + (unsigned int)c4;
}
if((c0 & 0xf8) == 0x10) //AIN2 and AIN3
{
// fprintf(stderr, "Reg:0x10 c0:0x%x c1:0x%x c2:0x%x c3:0x%u c4:0x%x\n", c0, c1, c2, c3, c4);
AIN2 = (unsigned int)c1 * 256 + (unsigned int)c2;
AIN3 = (unsigned int)c3 * 256 + (unsigned int)c4;
}
if((c0 & 0xf8) == 0x18) //AIN4 and AIN6
{
// fprintf(stderr, "Reg:0x18 c0:0x%x c1:0x%x c2:0x%x c3:0x%u c4:0x%x\n", c0, c1, c2, c3, c4);
AIN4 = (unsigned int)c1 * 256 + (unsigned int)c2;
AIN6 = (unsigned int)c3 * 256 + (unsigned int)c4;
}
if (Verbose)
{
SlowCount++;
if ((SlowCount & 0x1ff) == 0x1ff)
{
float FwdPwr = (float)AIN1 * (float)AIN1 / 145000.0;
float RevPwr = (float)AIN2 * (float)AIN2 / 145000.0;
// calculate SWR
double SWR = 0.0;
try
{
SWR = (1+sqrt(RevPwr/FwdPwr))/(1-sqrt(RevPwr/FwdPwr));
if(false == std::isnormal(SWR))
{
throw 0;
}
}
catch(int& e)
{
// there was an anomaly in the SWR calculation, make it obvious ...
SWR = 99.9;
}
fprintf(stderr, "AlexFwdPwr = %4.1f AlexRevPwr = %4.1f ", FwdPwr, RevPwr);
// report SWR if forward power is non-zero
if(static_cast<int>(FwdPwr) != 0)
{
fprintf(stderr, "SWR = %.2f:1 ", SWR);
}
fprintf(stderr, "ADCOver: %u HermesVersion: %d (dec) %X (hex)\n", ADCoverload, HermesVersion, HermesVersion);
//fprintf(stderr, "AIN1:%u AIN2:%u AIN3:%u AIN4:%u AIN5:%u AIN6:%u\n", AIN1, AIN2, AIN3, AIN4, AIN5, AIN6);
}
}
} //endif sync is valid
else
{
CorruptRxCount++;
// fprintf(stderr, "HermesProxy: EP6 received from Hermes failed sync header check.\n");
// int delta = inbuf - inbufptr;
// fprintf(stderr, "USBFrameOffset: %i inbufptr: %p delta: %i \n", USBFrameOffset, inbufptr, delta);
// PrintRawBuf(inbufptr); // include Ethernet header
return; // error return
}
} // end for two USB frames
//
// In each USB frame, the bytes per sample row, number of sample rows comes from the
// table. The first sample starts at offset 8 bytes. Each USB frame is 512 bytes
//
// ------------------ Input USB 2's complement buffer ------------------
// # of Rx # I+Q samples/receiver #Bytes/row #Pad Bytes/frame
// ------- --------------------- ---------- ----------------
// 1 63 8 0
// 2 36 14 0
// 3 25 20 4
// 4 19 26 10
// 5 15 32 24
// 6 13 38 10
// 7 11 44 20
// 8 10 50 4
//
// It's not straight forward to fully pack an output buffer. Instead, build the
// output buffer with fixed channel alignment. For example, for 3 receivers,
// outputbuf[0,1] is receiver 0 IQ, outputbuf[2,3] is receiver 1 IQ, outputbuf[4,5] is
// receiver 2 IQ. Then outputbuf[6,7] is receiver 0 IQ next sample. A table similar to
// above for output buffer is needed. One outbuf holds 256 floats and is never fully packed.
//
// ------------ Output 256 float buffer sizing --------------
// # of Rx # of samples per inBuf output floats output complexes
// ------- ----------------------- ------------- ----------------
// 1 63 * 2(I+Q) * 1(NumRx) 126 63
// 2 36 * 2(I+Q) * 2(NumRx) 144 72
// 3 25 * 2(I+Q) * 3(NumRx) 150 75
// 4 19 * 2(I+Q) * 4(NumRx) 152 76
// 5 15 * 2(I+Q) * 5(NumRx) 150 75
// 6 13 * 2(I+Q) * 6(NumRx) 156 78
// 7 11 * 2(I+Q) * 7(NumRx) 154 77
// 8 10 * 2(I+Q) * 8(NumRx) 160 80
//
// The work() routine needs to break up each outputbuf to the gnuradio
// out[] buffer streams (one per Rx).
//
// Pseudocode:
//
// get next (empty) output buffer
// set output indexer to zero
// set input indexer (inbuf, a byte pointer) is already 8 (skip the header)
// for number-of-rows:
// for number-of-receivers:
// do twice (for I and for Q):
// read 2's-complement at [input indexer]
// input index += 3 (bytes)
// convert to float
// write float[output indexer] to output array
// output indexer += 1 (float)
// next receiver
// input indexer += 2 (bytes) //skip M1,M0 bytes at end of row
// next row
//
//
//
unsigned int outindex;
unsigned char* inbufindex;
inbuf += 8; // Skip past USB sync header
// do two USB frames
for (unsigned int USBFrameOffset = 0; USBFrameOffset<=512; USBFrameOffset += 512)
{
inbufindex = inbuf + USBFrameOffset; // inbuf already pointing past Ethernet frame header
if ((outbuf = GetNextRxBuf()) == NULL)
return; // all buffers full. Throw away data
outindex = 0;
// one USB frame
for (int row=0; row < USBRowCount[NumReceivers - 1]; row++)
{
for (int receiver=0; receiver < NumReceivers; receiver++)
{
outbuf[outindex++] = Unpack2C(inbufindex); // I
inbufindex += 3;
outbuf[outindex++] = Unpack2C(inbufindex); // Q
inbufindex += 3;
};
inbufindex +=2; // skip microphone samples in the row
};
};
return; // normal return;
};
// Unpack an unsigned 2's complement sample into a floating point number
// maximum value of +1.0 and minimum of -1.0
float HermesProxy::Unpack2C(const unsigned char* inptr)
{
// 24 bit 2's complement --> float (-1.0 ... +1.0)
if ((PTTOnMutesRx) & (PTTMode == PTTOn))
return 0.0; // if receiver is muted
int F;
F = (int)(((signed char)*(inptr))<<16); // 2C to Float
F += ((int)((unsigned char)*(inptr+1))<<8);
F += (int)((unsigned char)*(inptr+2));
if (F<0)
F = -(~F + 1);
return (float)F/8388607.0;
};
//
// July 2017 change...
// Previously, this checked the fill level of the current buffer.
// New code always needs a new output buffer when called - simplify logic to just check
// to see if one is available and return it, else return NULL if none available (and
// increment lost Rx buffer counter).
//
// New version
IQBuf_t HermesProxy::GetNextRxBuf() // get next Writeable Rx buffer
{
if (((RxWriteCounter+1) & (NUMRXIQBUFS - 1)) == RxReadCounter)
{
LostRxBufCount++; // No Rx Buffers available. Throw away the data
return NULL;
}
else
{
++RxWriteCounter &= (NUMRXIQBUFS - 1); // get next writeable buffer
return RxIQBuf[RxWriteCounter];
}
};
IQBuf_t HermesProxy::GetRxIQ() // next Readable Rx buffer, called by HermesNB to pickup any RxIQ
{
//int status = pthread_mutex_trylock(&mutexRPG); // Don't block gnuradio scheduler
// if(status != 0)
// return NULL; // return 'no buffers' if can't acquire the mutex
if(RxReadCounter == RxWriteCounter)
{
//pthread_mutex_unlock(&mutexRPG);
return NULL; // empty - no buffers to return
}
IQBuf_t ReturnBuffer = RxIQBuf[RxReadCounter]; // get the next receiver buffer
++RxReadCounter &= (NUMRXIQBUFS - 1); // increment read counter modulo
//pthread_mutex_unlock(&mutexRPG);
return ReturnBuffer; // next readable Rx buffer
};
// ************ Routines to send data from gnuradio to the transmitter ***************
// The Hermes hardware does not have any method to indicate when it wants a frame,
// nor any back pressure mechanism. We derive the Tx timing by counting the Rx frames
// Hermes is sending to us. This depends on the Rx Sample rate and the number of
// receivers because the Tx sample rate is fixed at 48000.
//
// Some of the ratios involve prime numbers, so a fixed rate of Rx frames for each Tx
// frame is not practical. Instead, a table holds bits that indicate when to queue a
// Tx frame. The RxBufCount is a monotonically increasing long int, each Rx frame
// increments it. The transmitter always transmits 63 I+Q samples per frame.
// The bits in the array are spaced as uniformly as possible given prime numbers.
//
// USB USB
// RxSampleRate #Receivers #TxSamp*Rate/buffer #RxSamp/buffer Ratio Rx to Tx
// ----------- ---------- ------------------- -------------- --------------
// 48000 1 63 63 1
// 48000 2 63 36 1.75
// 48000 3 63 25 2.52
// 48000 4 63 19 3.315789476...
// 48000 5 63 15 4.2
// 48000 6 63 13 4.846153846...
// 48000 7 63 11 5.727272727...
// 48000 8 63 10 6.3
// 96000 1 126 63 2
// 96000 2 126 36 3.5
// 96000 3 126 25 5.04
// 96000 4 126 19 6.63157894...
// 96000 5 126 15 8.4
// 96000 6 126 13 9.69230769...
// 96000 7 126 11 11.45454545...
// 96000 8 126 10 12.6
// 192000 1 252 63 4
// 192000 2 252 36 7
// 192000 3 252 25 10.08
// 192000 4 252 19
// 192000 5 252 15 16.8
// 192000 6 252 13
// 192000 7 252 11
// 192000 8 252 10 25.2
// 384000 1 504 63 8
// 384000 2 504 36 14
// 384000 3 504 25 20.16
// 384000 4 504 19
// 384000 5 504 15 33.2
// 384000 6 504 13
// 384000 7 504 11
// 384000 8 504 10 50.4
//
//
//
// Method
// ------
//
// An Ethernet frame holds 2 HPSDR-USB frames, so the ratios above don't change when
// counting ethernet frames (Tx and Rx both double, ratio stays the same). We count
// Ethernet frames to determine when to schedule a Tx frame.
//
// For 1 or 2 receivers the ratios involve small common denominators, so we just
// count Ethernet frames by looking at the frame sequence number. For 3 or more
// receivers the ratios are non integer, so we use arrays to tell us when to
// schedule a Tx frame. For example, for 3 receivers and a rx rate of 48ksps, we
// need to almost uniformly in time schedule 25 tx frames for every 63 that are
// received.
//
// Future: If no data to transmit, periodically send a frame so that basic control
// registers get updated. [Hooks left commented for future use].
//
void HermesProxy::ScheduleTxFrame(unsigned long RxBufCount) // Transmit one ethernet frame to Hermes if ready.
{
// RxBufCount is a sequential 32-bit unsigned int received etherent frame sequence number
switch (NumReceivers)
{
case 1 :
if(RxSampleRate == 48000) // one Tx frame for each Rx frame
{
SendTxIQ();
return;
}
if(RxSampleRate == 96000) // one Tx frame for each two Rx frames
if((RxBufCount & 0x1) == 0)
{
SendTxIQ();
return;
}
if(RxSampleRate == 192000) // one Tx frame for each four Tx frames
if((RxBufCount & 0x3) == 0)
{
SendTxIQ();
return;
}
if(RxSampleRate == 384000) // one Tx frame for each eight Tx frames
if((RxBufCount & 0x7) == 0)
{
SendTxIQ();
return;
}
break;
case 2 :
if(RxSampleRate == 48000) // one Tx frame for each 1.75 Rx frame
if(((RxBufCount % 0x7) & 0x01) == 0) // (four Tx frames for each 7 Rx frames)
{
SendTxIQ(); // 0, 2, 4, 6 (not 1, 3, 5)
return;
}
if(RxSampleRate == 96000) // one Tx frame for each 3.5 Rx frames
if(((RxBufCount % 0x7) & 0x03) == 0) // (two Tx frames for each 7 Rx frames)
{
SendTxIQ(); // 0, 4 (not 1, 2, 3, 5, 6)
return;
}
if(RxSampleRate == 192000) // one Tx frame for each seven Tx frames
if((RxBufCount % 0x7) == 0)
{
SendTxIQ();
return;
}
if(RxSampleRate == 384000) // one Tx frame for each fourteen Tx frames
if((RxBufCount % 14) == 0)
{
SendTxIQ();
return;
}
break;
default : // 3 or more receivers
// // Compute a selector to decide which scheduler vector to use
int FrameIndex;
int RxNumIndex = NumReceivers-3; // 3, 4, 5, 6, 7 --> 0, 1, 2, 3, 4
int SpeedIndex = (RxSampleRate) / 48000; // 48k, 96k, 192k, 384k --> 1, 2, 4, 8
SpeedIndex = SpeedIndex >> 1; // 48k, 96k, 192k, 384k --> 0, 1, 2, 4
if (SpeedIndex == 4) SpeedIndex = 3; // 48k, 96k, 192k, 384k --> 0, 1, 2, 3
int selector = RxNumIndex * 4 + SpeedIndex; // 0 .. 19
// Compute the frame number within a vector
if(RxSampleRate == 48000)
FrameIndex = RxBufCount % 63; // FrameIndex is 0..62
if(RxSampleRate == 96000)
FrameIndex = RxBufCount % 126; // FrameIndex is 0..125
if(RxSampleRate == 192000)
FrameIndex = RxBufCount % 252; // FrameIndex is 0..251
if(RxSampleRate == 384000)
FrameIndex = RxBufCount % 504; // FrameIndex is 0..503
std::vector<int> * p;
p = schedulevector[selector]; // pick the schedule vector matching NumRx,RxSpeed
std::vector<int>::iterator itr;
itr = find (p->begin(), p->end(), FrameIndex);
if (itr != p->end())
{
SendTxIQ(); // if the Vector contains FrameIndex then schedule Tx Ethernet packet
//fprintf(stderr, "Scheduled 3..7 NumReceivers: %i RxSampleRate: %i selector: %i SampleIndex: %i\n",
// NumReceivers, RxSampleRate, selector, SampleIndex);
}
break;
}; // switch
return;
};
void HermesProxy::UpdateHermes() // send a set of control registers to hardware with naught Tx data
{
// Repurposed to send the initial registers to Hermes before starting the stream.
// Ought to rename this as InitializeHermes or something similar.
// DEBUG
//fprintf(stderr, "UpdateHermes called\n");
unsigned char buffer[512]; // dummy up a USB HPSDR buffer;
for(int i=0; i<512; i++)
buffer[i] = 0;
int length = 512; // metis_write ignores this value
unsigned char ep = 0x02; // all Hermes data is sent to end point 2
// metis_write needs to be called twice to make one ethernet write to the hardware
// Set these registers before starting the receive stream
BuildControlRegs(0, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(2, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(0, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(4, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(0, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(6, buffer);
metis_write(ep, buffer, length);
// Initialize the first TxBuffer (currently empty) with a valid control frame (on startup only)
BuildControlRegs(0, buffer);
RawBuf_t initial = TxBuf[0];
for(int i=0; i<512; i++)
initial[i] = buffer[i];
return;
}
void HermesProxy::BuildControlRegs(unsigned RegNum, RawBuf_t outbuf)
{
// create the sync + control register values to send to Hermes
// base on RegNum and the various parameter values.
// RegNum must be even.
unsigned char Speed = 0; // Rx sample rate
unsigned char RxCtrl = 0; // Rx controls
unsigned char Ctrl4 = 0; // Rx register C4 control
outbuf[0] = outbuf[1] = outbuf[2] = 0x7f; // HPSDR USB sync
outbuf[3] = RegNum; // C0 Control Register (Bank Sel + PTT)
if (PTTMode == PTTOn)
outbuf[3] |= 0x01; // set MOX bit
switch(RegNum)
{
case 0:
Speed = ClockSource; // Set clock Source from user input
if(RxSampleRate == 384000)
Speed |= 0x03;
if(RxSampleRate == 192000)
Speed |= 0x02;
if(RxSampleRate == 96000)
Speed |= 0x01;
if(RxSampleRate == 48000)
Speed |= 0x00;
RxCtrl = 0x00;
if(RxPreamp)
RxCtrl |= 0x04;
if(ADCdither)
RxCtrl |= 0x08;
if(ADCrandom)
RxCtrl |= 0x10;
Ctrl4 |= ((NumReceivers-1) << 3) & 0x38; // Number of receivers
// V1.58 of protocol_1 spec allows
// setting up to 8 receivers, but
// I can't find which register to set the
// Rx Frequency of the 8th receiver.
// Hermes sends corrupted USB frames if
// NumReceivers > 4. Theoretically
// Red Pitaya is OK to 6 (to be tested by
// someone else).
if(Duplex)
Ctrl4 |= 0x04;
outbuf[4] = Speed; // C1
outbuf[5] = 0x00; // C2
outbuf[6] = RxCtrl | AlexRxAnt; // C3
outbuf[7] = Ctrl4 | AlexTxAnt; // C4 - #Rx, Duplex
break;
case 2: // Tx NCO freq (and Rx1 NCO for special case)
outbuf[4] = ((unsigned char)(TransmitFrequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(TransmitFrequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(TransmitFrequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(TransmitFrequency)) & 0xff; // c4 RxFreq LSB
break;
case 4: // Rx1 NCO freq (out port 0)
outbuf[4] = ((unsigned char)(Receive0Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive0Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive0Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive0Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 6: // Rx2 NCO freq (out port 1)
outbuf[4] = ((unsigned char)(Receive1Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive1Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive1Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive1Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 8: // Rx3 NCO freq (out port 2)
outbuf[4] = ((unsigned char)(Receive2Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive2Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive2Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive2Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 10: // Rx4 NCO freq (out port 3)
outbuf[4] = ((unsigned char)(Receive3Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive3Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive3Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive3Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 12: // Rx5 NCO freq (out port 4)
outbuf[4] = ((unsigned char)(Receive4Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive4Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive4Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive4Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 14: // Rx6 NCO freq (out port 5)
outbuf[4] = ((unsigned char)(Receive5Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive5Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive5Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive5Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 16: // Rx7 NCO freq (out port 6)
outbuf[4] = ((unsigned char)(Receive6Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive6Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive6Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive6Frequency)) & 0xff; // c4 RxFreq LSB
break;
// Note: While Ver 1.58 of the HPSDR USB protocol doucment specifies up to 8 receivers,
// It only defines 7 receive frequency control register addresses. So we are currently
// limited to 7 receivers implemented.
case 18: // drive level & filt select (if Alex)
if (PTTOffMutesTx & (PTTMode == PTTOff))
outbuf[4] = 0; // (almost) kill Tx when PTTOff and PTTControlsTx
else
outbuf[4] = TxDrive; // c1
unsigned char RxHPF, TxLPF;
RxHPF = AlexRxHPF;
if (AlexRxHPF == 0) // if Rx autotrack
{
if (Receive0Frequency < 1500000)
RxHPF = 0x20; // bypass
else if (Receive0Frequency < 6500000)
RxHPF = 0x10; // 1.5 MHz HPF
else if (Receive0Frequency < 9500000)
RxHPF = 0x08; // 6.5 MHz HPF
else if (Receive0Frequency < 13000000)
RxHPF = 0x04; // 9.5 mHz HPF
else if (Receive0Frequency < 20000000)
RxHPF = 0x01; // 13 Mhz HPF
else if (Receive0Frequency < 50000000)
RxHPF = 0x02; // 20 MHz HPF
else RxHPF = 0x40; // 6M BPF + LNA
}
TxLPF = AlexTxLPF;
if (AlexTxLPF == 0) // if Tx autotrack
{
if (TransmitFrequency > 30000000)
TxLPF = 0x10; // 6m LPF
else if (TransmitFrequency > 19000000)
TxLPF = 0x20; // 10/12m LPF
else if (TransmitFrequency > 14900000)
TxLPF = 0x40; // 15/17m LPF
else if (TransmitFrequency > 9900000)
TxLPF = 0x01; // 30/20m LPF
else if (TransmitFrequency > 4900000)
TxLPF = 0x02; // 60/40m LPF
else if (TransmitFrequency > 3400000)
TxLPF = 0x04; // 80m LPF
else TxLPF = 0x08; // 160m LPF
}
outbuf[5] = 0x40; // c2 - Alex Manual filter control enabled
outbuf[6] = RxHPF & 0x7f; // c3 - Alex HPF filter selection
outbuf[7] = TxLPF & 0x7f; // c4 - Alex LPF filter selection
break;
case 20: // Hermes input attenuator setting
outbuf[4] = 0; //
outbuf[5] = 0x17; // Not implemented yet, should not be called by
outbuf[6] = 0; // TxControlCycler yet.
outbuf[7] = RxAtten; // 0..31 db attenuator setting (same function as preamp)
break;
case 22:
outbuf[4] = 0; // Register not documented, but zeroed by
outbuf[5] = 0; // PowerSDR...
outbuf[6] = 0; //
outbuf[7] = 0; //
break;
default:
fprintf(stderr, "Invalid Hermes/Metis register selection: %d\n", RegNum);
break;
};
};
// hermesNB calls this routine to give IQ data from the block input connector to the proxy.
// Packs transformed data into one HPSDR USB buffer with control registers.
// HermesNB gives us 63 complex samples from in0, we fill one USB buffer with them.
// Audio output could come from in1 but that forms a flowgraph loop in most useful cases
// which is disallowed by GNU Radio, so that code is commented out.
// called by HermesNB to give us IQ data to send
int HermesProxy::PutTxIQ(const gr_complex * in0, /*const gr_complex * in1,*/ int nsamples)
{
RawBuf_t outbuf;
int A, B, I, Q;
outbuf = GetNextTxBuf(); // get a Txbuffer
if (outbuf == NULL) // Could not get a Tx buffer
return 0; // Tell hermeNB we didn't consume any input
// format a HPSDR USB frame to send to Hermes.
TxControlCycler += 2; // advance to next register bank, modulo
if (TxControlCycler > 0x14) // 11 register banks (0..10). Note: Bank 10
TxControlCycler = 0; // (Hermes attenuator) requires firmware V2.0
BuildControlRegs(TxControlCycler, outbuf); // First 8 bytes are the control registers.
// Next 63 * 8 bytes are the IQ data and the Audio data.
// TODO - the L/R audio data to Hermes is not implemented yet.
for (int i=0; i<nsamples; i++) // put 63 IQ samples into frame
{
// Note: cannot implement audio output because the flowgraph would form a flow loop
// for any Hermes received data which is not allowed in GNU Radio.
/* A = (int)(in1[i].real() * 32767.0); // scale to 16 bits
B = (int)(in1[i].imag() * 32767.0); // scale to 16 bits
I = (unsigned int)A;
Q = (unsigned int)B;
// convert float to 2's complement 16-bit
outbuf[i*8 + 8] = (unsigned char)((I & 0xff00) >> 8); // L1 MSB audio channel out
outbuf[i*8 + 9] = (unsigned char)(I & 0xff); // L0 LSB
outbuf[i*8 + 10] = (unsigned char)((Q & 0xff00) >> 8); // R1 MSB audio channel out
outbuf[i*8 + 11] = (unsigned char)(Q & 0xff); // R0 LSB
*/
// Zero out the audio Left and Right channel outputs.
outbuf[i*8 + 8] = 0; // L1 MSB audio channel out
outbuf[i*8 + 9] = 0; // L0 LSB
outbuf[i*8 + 10] = 0; // R1 MSB audio channel out
outbuf[i*8 + 11] = 0; // R0 LSB
// convert float to 2's complement 16-bit
A = (int)(in0[i].real() * 32767.0); // scale to 16 bits
B = (int)(in0[i].imag() * 32767.0); // scale to 16 bits
// I = (unsigned int)A;
// Q = (unsigned int)B;
// 03-13-2014 Note: Hermes FPGA reverses transmit I & Q (thus contrary to documentation V1.43)
// Put them back into the correct places.
Q = (unsigned int)A;
I = (unsigned int)B;
if(PTTOffMutesTx & (PTTMode == PTTOff)) // Kill Tx if in Rx and PTTControls the Tx
{
I = 0;
Q = 0;
};
outbuf[i*8 + 12] = (unsigned char)((I & 0xff00) >> 8); // I1 MSB
outbuf[i*8 + 13] = (unsigned char)(I & 0xff); // I0 LSB
outbuf[i*8 + 14] = (unsigned char)((Q & 0xff00) >> 8); // Q1 MSB
outbuf[i*8 + 15] = (unsigned char)(Q & 0xff); // Q0 LSB
};
if(PTTMode == PTTVox) // if we are in Vox mode, check frame IQ contents
{
bool activity = false;
for (int i=0; i<nsamples; i++) // if any IQ sample is nonzero (VOX) then key Tx
if ((outbuf[i*8 + 12] != 0) ||
(outbuf[i*8 + 13] != 0) ||
(outbuf[i*8 + 14] != 0) ||
(outbuf[i*8 + 15] != 0) )
{
activity = true;
break;
};
if(activity)
outbuf[3] |= 1; // enable MOX PTT
};
// fprintf(stderr, "PutTxIQ: Consumed %d samples, TxControlCycler = %d\n",
// nsamples, TxControlCycler);
return nsamples;
};
RawBuf_t HermesProxy::GetNextTxBuf() // get a TXBuf if available
{
//int status = pthread_mutex_trylock(&mutexGPT); // Don't block gnuradio scheduler
//if(status != 0)
// return NULL; // No buffers if can't acquire mutex
if (((TxWriteCounter+1) & (NUMTXBUFS - 1)) == TxReadCounter)
{
//pthread_mutex_unlock(&mutexGPT);
return NULL;
}
++TxWriteCounter &= (NUMTXBUFS - 1); // get next writeable buffer
//pthread_mutex_unlock(&mutexGPT);
return TxBuf[TxWriteCounter];
};
// SendTxIQ() is called on a periodic basis to send Tx Ethernet frames to the
// Hermes/Metis hardware.
void HermesProxy::SendTxIQ()
{
if(TxStop) // Kill Tx frames if stopped
return;
unsigned char ep = 0x2; // Tx data goes to end point 2
// fprintf(stderr, "SendTxIQ: TxReadCounter = %d TxWriteCounter = %d TxFrameIdleCount = %d\n",
// TxReadCounter, TxWriteCounter, TxFrameIdleCount);
// Time to send one Tx Eth frame (2 x USB frames).
// If there are at least two buffers in the queue, send then free them.
//pthread_mutex_lock(&mutexGPT);
bool bufempty = (TxReadCounter == TxWriteCounter);
bool bufone = ((TxReadCounter+1 & (NUMTXBUFS - 1)) == TxWriteCounter);
int TempWriteCounter = TxWriteCounter;
if (TxWriteCounter < TxReadCounter)
TempWriteCounter += NUMTXBUFS;
bool bufburst = ((TempWriteCounter - TxReadCounter) >= (TXINITIALBURST * 2));
//pthread_mutex_unlock(&mutexGPT);
TotalTxBufCount++;
if(TxHoldOff) // Hold back initial burst of Tx Eth frames
{
if (!bufburst) // Not enough frames to send a burst
return;
// Have enough frames to send the burst
TxHoldOff = false; // clear the holdoff flag
for (int i=0; i<(TXINITIALBURST * 2); i++) // 2 USB frames per Ethernet frame
{
metis_write(ep, TxBuf[TxReadCounter], 512); // write one USB frame to metis
++TxReadCounter &= (NUMTXBUFS - 1); // and free it
}
return;
}
// We're out of bursting mode and into one-at-a-time mode
if ( bufempty | bufone ) // zero or one buffer ready
{
LostTxBufCount++;
return;
}
else // two or more buffers ready
{
//fprintf(stderr, "SendTxIQ02: TxReadCounter = %d TxWriteCounter = %d TxFrameIdleCount = %d\n",
//TxReadCounter, TxWriteCounter, TxFrameIdleCount);
metis_write(ep, TxBuf[TxReadCounter], 512); // write one USB frame to metis
// pthread_mutex_lock(&mutexGPT);
++TxReadCounter &= (NUMTXBUFS - 1); // and free it
//pthread_mutex_unlock(&mutexGPT);
metis_write(ep, TxBuf[TxReadCounter], 512); // write next USB frame to metis
//pthread_mutex_lock(&mutexGPT);
++TxReadCounter &= (NUMTXBUFS - 1); // and free it
//pthread_mutex_unlock(&mutexGPT);
// TxFrameIdleCount = 0; // have just sent a frame
};
return;
};
// TODO not yet implemented
void HermesProxy::ReceiveMicLR() {}; // receive an LR audio bufer from Hermes hardware
|