1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
|
/* -*- c++ -*- */
/*
* Copyright 2013-2015 Tom McDermott, N5EG
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
//
// Hermes Wideband Proxy
//
// Receive-only encapsulates the Hermes module for access/control by GNU Radio.
// Used by the HermesWB (Wide Band) module that provide Hermes source to GNU Radio.
//
// See the HPSDR documentation for USB and Ethernet frame formats.
//
// Uses the Metis Ethernet interface module to send/receive Ethernet
// frames to/from Hermes.
//
// HermesWB uses this proxy to convert raw data and control flags
// and send/receive them to Hermes.
//
// Version: March 21, 2015
#include <gnuradio/io_signature.h>
#include "HermesProxyW.h"
#include "HermesProxy.h"
#include "metis.h"
#include <stdio.h>
#include <cstring>
HermesProxyW::HermesProxyW(int RxPre, const char* Intfc, const char * ClkS,
int AlexRA, int AlexTA, int AlexHPF, int AlexLPF,
const char* MACAddr) // constructor
{
strcpy(interface, Intfc); // Ethernet interface to use (defaults to eth0)
unsigned int cs; // Convert ClockSource strings to unsigned, then intitalize
sscanf(ClkS, "%x", &cs);
ClockSource = (cs & 0xFC);
// Initialize the Alex control registers.
AlexRxAnt = AlexRA; // Select Alex Receive Antenna or from T/R relay
AlexTxAnt = AlexTA; // Select Alex Tx Antenna
AlexRxHPF = AlexHPF; // Select Alex Receive High Pass Filter
AlexTxLPF = AlexLPF; // Select Alex Transmit Low Pass Filter
for (int i=0; i<18; i++)
mactarget[i] = toupper(MACAddr[i]); // Copy the requested MAC target address
Receive0Frequency = 0;
Receive1Frequency = 0;
TransmitFrequency = 0; // initialize frequencies
TxDrive = 0; // default to (almost) off
PTTMode = 0;
RxPreamp = (bool)RxPre;
PTTOffMutesTx = 0; // PTT Off mutes the transmitter
PTTOnMutesRx = 0; // PTT On mutes receiver
ADCdither = false;
ADCrandom = false;
RxAtten = 0; // Hermes V2.0
Duplex = true; // Allows TxF to program separately from RxF
TxStop = false;
RxWriteCounter = 0; //
RxReadCounter = 0; // These control the Rx buffers to Gnuradio
RxWriteFill = 0; //
TxWriteCounter = 0; //
TxReadCounter = 0; // These control the Tx buffers to Hermes
TxControlCycler = 0; //
TxFrameIdleCount = 0; //
LostRxBufCount = 0; //
TotalRxBufCount = 0; //
LostTxBufCount = 0; //
TotalTxBufCount = 0; // diagnostics
CorruptRxCount = 0; //
LostEthernetRx = 0; //
CurrentEthSeqNum = 0; //
// allocate the receiver buffers
for(int i=0; i<NUMRXIQBUFS; i++)
RxIQBuf[i] = new float[RXBUFSIZE];
// allocate the transmit buffers
for(int i=0; i<NUMTXBUFS; i++)
TxBuf[i] = new unsigned char[TXBUFSIZE];
metis_discover((const char *)(interface));
//
// If there is no specified MAC address (i.e. wildcard, or anything less than 17
// charracters, then just grab the first Hermes/Metis that
// responds to discovery. If there is a specific MAC address specified, then wait
// until it appears in the Metis cards table, and set the metis table index to match.
// The string is HH:HH:HH:HH:HH:HH\0 formated, where HH is a 2-digital Hexidecimal number
// uppercase, example: 04:7F:3D:0F:28:5A
//
metis_entry = 0;
if (strlen(mactarget) != 17) // Not a fully-qualified MAC address, default to first MAC found
{
while (metis_found() == 0)
; // wait until Hermes responds with first discovered MAC
}
else // Search the table for the entry matching requested MAC address
{
bool found = false;
while(!found) // Search for MAC address in the metis_table until the cows come home
for(int i=0; i<metis_found(); i++)
{
if (strcmp(mactarget, metis_mac_address(i)) == 0) // Exact match found
{
metis_entry = i; // Select entry in metis_table
found = true;
break;
}
}
}
metis_receive_stream_control(RxStream_Off, metis_entry); // turn off Hermes -> PC streams
UpdateHermes(); // send specific control registers
// and initialize 1st Tx buffer
// before allowing scheduler to Start()
};
HermesProxyW::~HermesProxyW()
{
fprintf(stderr, "\nLostRxBufCount = %lu TotalRxBufCount = %lu"
" LostTxBufCount = %lu TotalTxBufCount = %lu"
" CorruptRxCount = %lu LostEthernetRx = %lu\n",
LostRxBufCount, TotalRxBufCount, LostTxBufCount,
TotalTxBufCount, CorruptRxCount, LostEthernetRx);
metis_receive_stream_control(RxStream_Off, metis_entry); // stop Hermes data stream
metis_stop_receive_thread(); // stop receive_thread & close socket
for(int i=0; i<NUMTXBUFS; i++)
delete [] TxBuf[i];
for(int i=0; i<NUMRXIQBUFS; i++)
delete [] RxIQBuf[i];
}
void HermesProxyW::Stop() // stop ethernet I/O
{
metis_receive_stream_control(RxStream_Off, metis_entry); // stop Hermes Rx data stream
TxStop = true; // stop Tx data to Hermes
};
void HermesProxyW::Start() // start rx stream
{
TxStop = false; // allow Tx data to Hermes
// Note: just turning on the WB stream does not work. Have to throw away the NB samples.
metis_receive_stream_control(RxStream_NBWB_On, metis_entry); // start Hermes Wideband Rx data stream
};
void HermesProxyW::PrintRawBuf(RawBuf_t inbuf) // for debugging
{
fprintf(stderr,"Raw buffer from Hermes: 0x000:: ");
for(int i=0; i<8; i++)
fprintf(stderr,"%02X:",inbuf[i]);
fprintf(stderr,"\n");
inbuf += 8;
fprintf(stderr, " | 0x008:: ");
for(int i=0; i<8; i++)
fprintf(stderr,"%02X:",inbuf[i]);
fprintf(stderr, "\n ");
for (int j=0; j<5; j++) {
for(int i=0; i<14; i++)
fprintf(stderr,"%02X:",inbuf[i+j*14+8]);
fprintf(stderr, "\n ");
}
fprintf(stderr, "\n");
fprintf(stderr, " | 0x208:: ");
for(int i=0; i<8; i++)
fprintf(stderr,"%02X:",inbuf[i+512]);
fprintf(stderr,"\n ");
for (int j=0; j<5; j++) {
for(int i=0; i<14; i++)
fprintf(stderr,"%02X:",inbuf[i+j*14+520]);
fprintf(stderr, "\n ");
}
fprintf(stderr, "\n");
};
// ********** Routines to receive data from Hermes/Metis and give to Gnuradio ****************
void HermesProxyW::ReceiveRxIQ(unsigned char * inbuf) // called by metis Rx thread.
{
// look for lost receive packets based on skips in the HPSDR ethernet header
// sequence number.
unsigned int SequenceNum = (unsigned char)(inbuf[4]) << 24;
SequenceNum += (unsigned char)(inbuf[5]) << 16;
SequenceNum += (unsigned char)(inbuf[6]) << 8;
SequenceNum += (unsigned char)(inbuf[7]);
if(SequenceNum > CurrentEthSeqNum + 1)
{
LostEthernetRx += (SequenceNum - CurrentEthSeqNum);
CurrentEthSeqNum = SequenceNum;
}
else
{
if(SequenceNum == CurrentEthSeqNum + 1)
CurrentEthSeqNum++;
}
//fprintf(stderr, "Sequence number: %u\n", SequenceNum);
// Metis Rx thread gives us collection of samples including the Ethernet header
// plus 2 x HPSDR USB frames.
// In the wideband mode we get 256 float samples per USB input buffer.
// When the least significant 5 bits of the sequence number are zero, the USB
// frame is the first of {16,384 samples / 256 floats-per-frame = } 64 USB frames.
// Output 64 consecutive frames as one float vector.
//
inbuf += 8; // skip past Ethernet header
if ((SequenceNum & 0x001f) == 0) // 32 Ethernet frame boundary --> start of vector.
{
ScheduleTxFrame(); // Schedule a control bits Tx ethernet frame
if (!RxWriteBufAligned()) // not aligned - we have a problem
for (int i=0; i<63; i++)
{
if (RxBufFillCount() >= (NUMRXIQBUFS - 1)) // buffers full, drop ethernet frame
return;
IQBuf_t dummy = GetNextRxWriteBuf(); // fill a buffer with trash
if (RxWriteBufAligned())
break; // now aligned
}
}
if (RxBufFillCount() >= (NUMRXIQBUFS - 2)) // We're full. throw away ethernet frame
return;
// BUGBUG
//for (int c=0; c<1024; c++)
// fwrite(&inbuf[c], 1, 1, f);
//fwrite(inbuf, 1, 1024, f);
IQBuf_t outbuf = GetCurrentRxWriteBuf();
for (int j = 0; j<256; j++) // read 256 floats
{
int I = (((inbuf[j*2+1]) << 8) & 0xff00) | (inbuf[j*2+0] & 0xff);
if(I >= 32768) I -= 65536;
outbuf[j] = ((float)I/32767.0); // should exactly fill one buffer
}
outbuf = GetNextRxWriteBuf();
for (int j = 0; j<256; j++) // read 256 floats
{
int I = (((inbuf[j*2+513]) << 8) & 0xff00) | (inbuf[j*2+512] & 0xff);
if(I >= 32768) I -= 65536;
outbuf[j] = ((float)I/32767.0); // should exactly fill one buffer
}
outbuf = GetNextRxWriteBuf();
return;
};
bool HermesProxyW::RxReadBufAligned() //Check if RcvRead buffer is aligned on a 64-buffer boundary
{
if ((RxReadCounter & 0x3f) == 0)
return true;
return false;
};
bool HermesProxyW::RxWriteBufAligned() //Check if Rcv Write buffer is aligned on a 64-buffer boundary
{
if ((RxWriteCounter & 0x3f) == 0)
return true;
return false;
};
int HermesProxyW::RxBufFillCount() // how many RxBuffers are filled?
{
if (RxWriteCounter >= RxReadCounter)
return(RxWriteCounter - RxReadCounter);
else
return(RxWriteCounter + NUMRXIQBUFS - RxReadCounter);
};
IQBuf_t HermesProxyW::GetNextRxReadBuf()
{ // used to be called GetIQBuf()
if(RxReadCounter == RxWriteCounter)
return NULL; // empty - no buffers to return
++RxReadCounter &= (NUMRXIQBUFS - 1); // increment read counter modulo
IQBuf_t ReturnBuffer = RxIQBuf[RxReadCounter]; // get the next receiver buffer
return ReturnBuffer;
};
IQBuf_t HermesProxyW::GetCurrentRxReadBuf()
{
return RxIQBuf[RxReadCounter];
};
IQBuf_t HermesProxyW::GetNextRxWriteBuf()
{ // used to be called GetIQBuf()
if (((RxWriteCounter+1) & (NUMRXIQBUFS - 1)) == RxReadCounter)
{
LostRxBufCount++; // No Rx Buffers available. Throw away the data
return NULL;
}
++RxWriteCounter &= (NUMRXIQBUFS - 1); // get next writeable buffer
RxWriteFill = 0;
return RxIQBuf[RxWriteCounter];
};
IQBuf_t HermesProxyW::GetCurrentRxWriteBuf()
{
return RxIQBuf[RxWriteCounter];
};
// ************ Routines to send data from gnuradio to the transmitter ***************
// Queue two transmit USB frames to Hermes each group of 64 receive buffers. It is used to
// to keep the transmit data zeroed out and to send controls to Hermes
void HermesProxyW::ScheduleTxFrame() // Queue two USB frames to Hermes if ready.
{
PutTxIQ(); // Queue a pair of USB frames
PutTxIQ();
SendTxIQ(); // Then send it as one ethernet frame
return;
};
void HermesProxyW::UpdateHermes() // send a set of control registers to hardware with naught Tx data
{
// Repurposed to send the initial registers to Hermes before starting the stream.
// Ought to rename this as InitializeHermes or something similar.
// DEBUG
//fprintf(stderr, "UpdateHermes called\n");
unsigned char buffer[512]; // dummy up a USB HPSDR buffer;
for(int i=0; i<512; i++)
buffer[i] = 0;
int length = 512; // metis_write ignores this value
unsigned char ep = 0x02; // all Hermes data is sent to end point 2
// metis_write needs to be called twice to make one ethernet write to the hardware
// Set these registers before starting the receive stream
BuildControlRegs(0, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(2, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(0, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(4, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(0, buffer);
metis_write(ep, buffer, length);
BuildControlRegs(6, buffer);
metis_write(ep, buffer, length);
// Initialize the first TxBuffer (currently empty) with a valid control frame (on startup only)
BuildControlRegs(0, buffer);
RawBuf_t initial = TxBuf[0];
for(int i=0; i<512; i++)
initial[i] = buffer[i];
return;
}
void HermesProxyW::BuildControlRegs(unsigned RegNum, RawBuf_t outbuf)
{
// create the sync + control register values to send to Hermes
// base on RegNum and the various parameter values.
// RegNum must be even.
unsigned char Speed = 0; // Rx sample rate
unsigned char RxCtrl = 0; // Rx controls
unsigned char Ctrl4 = 0; // Rx register C4 control
outbuf[0] = outbuf[1] = outbuf[2] = 0x7f; // HPSDR USB sync
outbuf[3] = RegNum; // C0 Control Register (Bank Sel + PTT)
if (PTTMode == PTTOn)
outbuf[3] |= 0x01; // set MOX bit
switch(RegNum)
{
case 0:
Speed = ClockSource; // Set clock Source from user input
if(RxSampleRate == 384000)
Speed |= 0x03;
if(RxSampleRate == 192000)
Speed |= 0x02;
if(RxSampleRate == 96000)
Speed |= 0x01;
if(RxSampleRate == 48000)
Speed |= 0x00;
RxCtrl = 0x00;
if(RxPreamp)
RxCtrl |= 0x04;
if(ADCdither)
RxCtrl |= 0x08;
if(ADCrandom)
RxCtrl |= 0x10;
if(NumReceivers == 2)
Ctrl4 |= 0x08;
if(Duplex)
Ctrl4 |= 0x04;
outbuf[4] = Speed; // C1
outbuf[5] = 0x00; // C2
outbuf[6] = RxCtrl | AlexRxAnt; // C3
outbuf[7] = Ctrl4 | AlexTxAnt; // C4 - #Rx, Duplex
break;
case 2: // Tx NCO freq (and Rx1 NCO for special case)
outbuf[4] = ((unsigned char)(TransmitFrequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(TransmitFrequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(TransmitFrequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(TransmitFrequency)) & 0xff; // c4 RxFreq LSB
break;
case 4: // Rx1 NCO freq
outbuf[4] = ((unsigned char)(Receive0Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive0Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive0Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive0Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 6: // Rx2 NCO freq
outbuf[4] = ((unsigned char)(Receive1Frequency >> 24)) & 0xff; // c1 RxFreq MSB
outbuf[5] = ((unsigned char)(Receive1Frequency >> 16)) & 0xff; // c2
outbuf[6] = ((unsigned char)(Receive1Frequency >> 8)) & 0xff; // c3
outbuf[7] = ((unsigned char)(Receive1Frequency)) & 0xff; // c4 RxFreq LSB
break;
case 8: // Rx3 NCO freq
case 10: // Rx4 NCO freq
case 12: // Rx5 NCO freq
case 14: // Rx6 NCO freq
case 16: // Rx7 NCO freq
outbuf[4] = 0; // c1 RxFreq MSB
outbuf[5] = 0; // c2
outbuf[6] = 0; // c3
outbuf[7] = 0; // c4 RxFreq LSB
break;
case 18: // drive level & filt select (if Alex)
if (PTTOffMutesTx & (PTTMode == PTTOff))
outbuf[4] = 0; // (almost) kill Tx when PTTOff and PTTControlsTx
else
outbuf[4] = TxDrive; // c1
unsigned char RxHPF, TxLPF;
RxHPF = AlexRxHPF;
if (AlexRxHPF == 0) // if Rx autotrack
{
if (Receive0Frequency < 1500000)
RxHPF = 0x20; // bypass
else if (Receive0Frequency < 6500000)
RxHPF = 0x10; // 1.5 MHz HPF
else if (Receive0Frequency < 9500000)
RxHPF = 0x08; // 6.5 MHz HPF
else if (Receive0Frequency < 13000000)
RxHPF = 0x04; // 9.5 mHz HPF
else if (Receive0Frequency < 20000000)
RxHPF = 0x01; // 13 Mhz HPF
else if (Receive0Frequency < 50000000)
RxHPF = 0x02; // 20 MHz HPF
else RxHPF = 0x40; // 6M BPF + LNA
}
TxLPF = AlexTxLPF;
if (AlexTxLPF == 0) // if Tx autotrack
{
if (TransmitFrequency > 30000000)
TxLPF = 0x10; // 6m LPF
else if (TransmitFrequency > 19000000)
TxLPF = 0x20; // 10/12m LPF
else if (TransmitFrequency > 14900000)
TxLPF = 0x40; // 15/17m LPF
else if (TransmitFrequency > 9900000)
TxLPF = 0x01; // 30/20m LPF
else if (TransmitFrequency > 4900000)
TxLPF = 0x02; // 60/40m LPF
else if (TransmitFrequency > 3400000)
TxLPF = 0x04; // 80m LPF
else TxLPF = 0x08; // 160m LPF
}
outbuf[5] = 0x40; // c2 - Alex Manual filter control enabled
outbuf[6] = RxHPF & 0x7f; // c3 - Alex HPF filter selection
outbuf[7] = TxLPF & 0x7f; // c4 - Alex LPF filter selection
break;
case 20: // Hermes input attenuator setting
outbuf[4] = 0; //
outbuf[5] = 0x17; // Not implemented yet, should not be called by
outbuf[6] = 0; // TxControlCycler yet.
outbuf[7] = RxAtten; // 0..31 db attenuator setting (same function as preamp)
break;
case 22:
outbuf[4] = 0; // Register not documented, but zeroed by
outbuf[5] = 0; // PowerSDR...
outbuf[6] = 0; //
outbuf[7] = 0; //
break;
default:
fprintf(stderr, "Invalid Hermes/Metis register selection: %d\n", RegNum);
break;
};
};
void HermesProxyW::PutTxIQ() // Send next control registers plus all zero data into an outbuf
{
RawBuf_t outbuf;
int A, B, I, Q;
outbuf = GetNextTxBuf(); // get a Txbuffer
if (outbuf == NULL) // Could not get a Tx buffer
return; // WB cannot consume any input
// format a HPSDR USB frame to send to Hermes.
TxControlCycler += 2; // advance to next register bank, modulo
if (TxControlCycler > 0x14) // 11 register banks (0..10). Note: Bank 10
TxControlCycler = 0; // (Hermes attenuator) requires firmware V2.0
BuildControlRegs(TxControlCycler, outbuf); // First 8 bytes are the control registers.
for (int i=0; i<63; i++) // put 63 IQ samples into frame
{
// Zero out the audio Left and Right channel outputs.
outbuf[i*8 + 8] = 0; // L1 MSB audio channel out
outbuf[i*8 + 9] = 0; // L0 LSB
outbuf[i*8 + 10] = 0; // R1 MSB audio channel out
outbuf[i*8 + 11] = 0; // R0 LSB
// Zero out the I and Q transmit data
outbuf[i*8 + 12] = 0; // I1 MSB
outbuf[i*8 + 13] = 0; // I0 LSB
outbuf[i*8 + 14] = 0; // Q1 MSB
outbuf[i*8 + 15] = 0; // Q0 LSB
};
return;
};
RawBuf_t HermesProxyW::GetNextTxBuf() // get a TXBuf if available
{
if (((TxWriteCounter+1) & (NUMTXBUFS - 1)) == TxReadCounter)
return NULL;
++TxWriteCounter &= (NUMTXBUFS - 1); // get next writeable buffer
return TxBuf[TxWriteCounter];
};
// SendTxIQ() is called on a periodic basis to send Tx Ethernet frames to the
// Hermes/Metis hardware. It sends 2 USB frames in one Ethernet Frame.
void HermesProxyW::SendTxIQ()
{
if(TxStop) // Kill Tx frames if stopped
return;
unsigned char ep = 0x2; // Tx data goes to end point 2
// fprintf(stderr, "SendTxIQ: TxReadCounter = %d TxWriteCounter = %d TxFrameIdleCount = %d\n",
// TxReadCounter, TxWriteCounter, TxFrameIdleCount);
// Time to send one Tx Eth frame (2 x USB frames).
// If there are at least two buffers in the queue, send then free them.
bool bufempty = (TxReadCounter == TxWriteCounter);
bool bufone = ((TxReadCounter+1 & (NUMTXBUFS - 1)) == TxWriteCounter);
TotalTxBufCount++;
if ( bufempty | bufone ) // zero or one buffer ready
{
LostTxBufCount++; // Not necessarily a lost buffer for hermesWB
//fprintf(stderr, "SendTxIQ01: TxReadCounter = %d TxWriteCounter = %d "
//"TxFrameIdleCount = %d bufempty = %d bufone = %d\n",
//TxReadCounter, TxWriteCounter, TxFrameIdleCount, bufempty, bufone);
}
else // two or more buffers ready
{
//fprintf(stderr, "SendTxIQ02: TxReadCounter = %d TxWriteCounter = %d TxFrameIdleCount = %d\n",
//TxReadCounter, TxWriteCounter, TxFrameIdleCount);
metis_write(ep, TxBuf[TxReadCounter], 512); // write one USB frame to metis
++TxReadCounter &= (NUMTXBUFS - 1); // and free it
metis_write(ep, TxBuf[TxReadCounter], 512); // write next USB frame to metis
++TxReadCounter &= (NUMTXBUFS - 1); // and free it
};
return;
};
|