1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
#!/usr/bin/env python
#
# Copyright 2008,2009,2011,2012 Free Software Foundation, Inc.
#
# This file is part of GNU Radio
#
# GNU Radio is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# GNU Radio is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with GNU Radio; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
SAMP_RATE_KEY = 'samp_rate'
GAIN_KEY = lambda x: 'gain:'+x
BWIDTH_KEY = 'bwidth'
TX_FREQ_KEY = 'tx_freq'
FREQ_CORR_KEY = 'freq_corr'
AMPLITUDE_KEY = 'amplitude'
AMPL_RANGE_KEY = 'ampl_range'
WAVEFORM_FREQ_KEY = 'waveform_freq'
WAVEFORM_OFFSET_KEY = 'waveform_offset'
WAVEFORM2_FREQ_KEY = 'waveform2_freq'
FREQ_RANGE_KEY = 'freq_range'
GAIN_RANGE_KEY = lambda x: 'gain_range:'+x
BWIDTH_RANGE_KEY = 'bwidth_range'
DC_OFFSET_REAL = 'dc_offset_real'
DC_OFFSET_IMAG = 'dc_offset_imag'
IQ_BALANCE_MAG = 'iq_balance_mag'
IQ_BALANCE_PHA = 'iq_balance_pha'
TYPE_KEY = 'type'
def setter(ps, key, val): ps[key] = val
import osmosdr
from gnuradio import blocks
from gnuradio import filter
from gnuradio import analog
from gnuradio import digital
from gnuradio import gr, gru, eng_notation
from gnuradio.gr.pubsub import pubsub
from gnuradio.eng_option import eng_option
from optparse import OptionParser
import sys
import math
import numpy
import random
n2s = eng_notation.num_to_str
waveforms = { analog.GR_SIN_WAVE : "Sinusoid",
analog.GR_CONST_WAVE : "Constant",
analog.GR_GAUSSIAN : "Gaussian Noise",
analog.GR_UNIFORM : "Uniform Noise",
"2tone" : "Two Tone (IMD)",
"sweep" : "Freq. Sweep",
"gsm" : "GSM Bursts" }
class gsm_source_c(gr.hier_block2):
def __init__(self, sample_rate, amplitude):
gr.hier_block2.__init__(self, "gsm_source_c",
gr.io_signature(0, 0, 0), # Input signature
gr.io_signature(1, 1, gr.sizeof_gr_complex)) # Output signature
self._symb_rate = 13e6 / 48;
self._samples_per_symbol = 2
self._data = blocks.vector_source_b(self.gen_gsm_seq(), True, 2)
self._split = blocks.vector_to_streams(gr.sizeof_char*1, 2)
self._pack = blocks.unpacked_to_packed_bb(1, gr.GR_MSB_FIRST)
self._mod = digital.gmsk_mod(self._samples_per_symbol, bt=0.35)
self._pwr_f = blocks.char_to_float(1, 1)
self._pwr_c = blocks.float_to_complex(1)
self._pwr_w = blocks.repeat(gr.sizeof_gr_complex*1, self._samples_per_symbol)
self._mul = blocks.multiply_vcc(1)
self._interpolate = filter.fractional_resampler_cc( 0,
(self._symb_rate * self._samples_per_symbol) / sample_rate )
self._scale = blocks.multiply_const_cc(amplitude)
self.connect(self._data, self._split)
self.connect((self._split, 0), self._pack, self._mod, (self._mul, 0))
self.connect((self._split, 1), self._pwr_f, self._pwr_c, self._pwr_w, (self._mul, 1))
self.connect(self._mul, self._interpolate, self._scale, self)
def set_amplitude(self, amplitude):
self._scale.set_k(amplitude)
def set_sampling_freq(self, sample_rate):
self._interpolate.set_interp_ratio( (self._symb_rate * self._samples_per_symbol) / sample_rate )
def gen_gsm_burst(self, l):
chunks = [
[0,0,0],
list(numpy.random.randint(0, 2, 58)),
[0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1],
list(numpy.random.randint(0, 2, 58)),
[0,0,0],
]
burst = sum(chunks,[])
burst = sum(map(list, zip(burst, (1,) * len(burst))), [])
burst += [1,0] * (l-148)
return map(int, burst)
def gen_gsm_frame(self):
return \
self.gen_gsm_burst(158) + \
self.gen_gsm_burst(158) + \
self.gen_gsm_burst(158) + \
self.gen_gsm_burst(159) + \
self.gen_gsm_burst(158) + \
self.gen_gsm_burst(158) + \
self.gen_gsm_burst(158) + \
self.gen_gsm_burst(159)
def gen_gsm_seq(self):
return sum([self.gen_gsm_frame() for i in range(10)], [])
#
# GUI-unaware GNU Radio flowgraph. This may be used either with command
# line applications or GUI applications.
#
class top_block(gr.top_block, pubsub):
def __init__(self, options, args):
gr.top_block.__init__(self)
pubsub.__init__(self)
self._verbose = options.verbose
#initialize values from options
self._setup_osmosdr(options)
self[SAMP_RATE_KEY] = options.samp_rate
self[TX_FREQ_KEY] = options.tx_freq
self[FREQ_CORR_KEY] = options.freq_corr
self[AMPLITUDE_KEY] = options.amplitude
self[WAVEFORM_FREQ_KEY] = options.waveform_freq
self[WAVEFORM_OFFSET_KEY] = options.offset
self[WAVEFORM2_FREQ_KEY] = options.waveform2_freq
# initialize reasonable defaults for DC / IQ correction
self[DC_OFFSET_REAL] = 0
self[DC_OFFSET_IMAG] = 0
self[IQ_BALANCE_MAG] = 0
self[IQ_BALANCE_PHA] = 0
#subscribe set methods
self.subscribe(SAMP_RATE_KEY, self.set_samp_rate)
for name in self.get_gain_names():
self.subscribe(GAIN_KEY(name), (lambda gain,self=self,name=name: self.set_named_gain(gain, name)))
self.subscribe(BWIDTH_KEY, self.set_bandwidth)
self.subscribe(TX_FREQ_KEY, self.set_freq)
self.subscribe(FREQ_CORR_KEY, self.set_freq_corr)
self.subscribe(AMPLITUDE_KEY, self.set_amplitude)
self.subscribe(WAVEFORM_FREQ_KEY, self.set_waveform_freq)
self.subscribe(WAVEFORM2_FREQ_KEY, self.set_waveform2_freq)
self.subscribe(TYPE_KEY, self.set_waveform)
self.subscribe(DC_OFFSET_REAL, self.set_dc_offset)
self.subscribe(DC_OFFSET_IMAG, self.set_dc_offset)
self.subscribe(IQ_BALANCE_MAG, self.set_iq_balance)
self.subscribe(IQ_BALANCE_PHA, self.set_iq_balance)
#force update on pubsub keys
for key in (SAMP_RATE_KEY, GAIN_KEY, BWIDTH_KEY,
TX_FREQ_KEY, FREQ_CORR_KEY, AMPLITUDE_KEY,
WAVEFORM_FREQ_KEY, WAVEFORM_OFFSET_KEY, WAVEFORM2_FREQ_KEY):
#print key, "=", self[key]
self[key] = self[key]
self[TYPE_KEY] = options.type #set type last
def _setup_osmosdr(self, options):
self._sink = osmosdr.sink(options.args)
try:
self._sink.get_sample_rates().start()
except RuntimeError:
print "Sink has no sample rates (wrong device arguments?)."
sys.exit(1)
if options.samp_rate is None:
options.samp_rate = self._sink.get_sample_rates().start()
self.set_samp_rate(options.samp_rate)
# Set the gain from options
if(options.gain):
gain = self._sink.set_gain(options.gain)
if self._verbose:
print "Set gain to:", gain
if self._verbose:
gain_names = self.src.get_gain_names()
for name in gain_names:
range = self.src.get_gain_range(name)
print "%s gain range: start %d stop %d step %d" % (name, range.start(), range.stop(), range.step())
if options.gains:
for tuple in options.gains.split(","):
name, gain = tuple.split(":")
gain = int(gain)
print "Setting gain %s to %d." % (name, gain)
self.src.set_gain(gain, name)
if self._verbose:
rates = self.src.get_sample_rates()
print 'Supported sample rates %d-%d step %d.' % (rates.start(), rates.stop(), rates.step())
# Set the antenna
if(options.antenna):
ant = self._sink.set_antenna(options.antenna, 0)
if self._verbose:
print "Set antenna to:", ant
self.publish(FREQ_RANGE_KEY, self._sink.get_freq_range)
for name in self.get_gain_names():
self.publish(GAIN_RANGE_KEY(name), (lambda self=self,name=name: self._sink.get_gain_range(name)))
self.publish(BWIDTH_RANGE_KEY, self._sink.get_bandwidth_range)
for name in self.get_gain_names():
self.publish(GAIN_KEY(name), (lambda self=self,name=name: self._sink.get_gain(name)))
self.publish(BWIDTH_KEY, self._sink.get_bandwidth)
def get_gain_names(self):
return self._sink.get_gain_names()
def set_samp_rate(self, sr):
sr = self._sink.set_sample_rate(sr)
if self[TYPE_KEY] in (analog.GR_SIN_WAVE, analog.GR_CONST_WAVE):
self._src.set_sampling_freq(self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "2tone":
self._src1.set_sampling_freq(self[SAMP_RATE_KEY])
self._src2.set_sampling_freq(self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "sweep":
self._src1.set_sampling_freq(self[SAMP_RATE_KEY])
self._src2.set_sampling_freq(self[WAVEFORM_FREQ_KEY]*2*math.pi/self[SAMP_RATE_KEY])
elif self[TYPE_KEY] == "gsm":
self._src.set_sampling_freq(self[SAMP_RATE_KEY])
else:
return True # Waveform not yet set
if self._verbose:
print "Set sample rate to:", sr
return True
def set_named_gain(self, gain, name):
if gain is None:
g = self[GAIN_RANGE_KEY(name)]
gain = float(g.start()+g.stop())/2
if self._verbose:
print "Using auto-calculated mid-point gain"
self[GAIN_KEY(name)] = gain
return
gain = self._sink.set_gain(gain, name)
if self._verbose:
print "Set " + name + " gain to:", gain
def set_bandwidth(self, bw):
clipped_bw = self[BWIDTH_RANGE_KEY].clip(bw)
if self._sink.get_bandwidth() != clipped_bw:
bw = self._sink.set_bandwidth(clipped_bw)
if self._verbose:
print "Set bandwidth to:", bw
def set_dc_offset(self, value):
correction = complex( self[DC_OFFSET_REAL], self[DC_OFFSET_IMAG] )
try:
self._sink.set_dc_offset( correction )
if self._verbose:
print "Set DC offset to", correction
except RuntimeError as ex:
print ex
def set_iq_balance(self, value):
correction = complex( self[IQ_BALANCE_MAG], self[IQ_BALANCE_PHA] )
try:
self._sink.set_iq_balance( correction )
if self._verbose:
print "Set IQ balance to", correction
except RuntimeError as ex:
print ex
def set_freq(self, freq):
if freq is None:
f = self[FREQ_RANGE_KEY]
freq = float(f.start()+f.stop())/2.0
if self._verbose:
print "Using auto-calculated mid-point frequency"
self[TX_FREQ_KEY] = freq
return
freq = self._sink.set_center_freq(freq)
if freq is not None:
self._freq = freq
if self._verbose:
print "Set center frequency to", freq
elif self._verbose:
print "Failed to set freq."
return freq
def set_freq_corr(self, ppm):
if ppm is None:
ppm = 0.0
if self._verbose:
print "Using frequency corrrection of", ppm
self[FREQ_CORR_KEY] = ppm
return
ppm = self._sink.set_freq_corr(ppm)
if self._verbose:
print "Set frequency correction to:", ppm
def set_waveform_freq(self, freq):
if self[TYPE_KEY] == analog.GR_SIN_WAVE:
self._src.set_frequency(freq)
elif self[TYPE_KEY] == "2tone":
self._src1.set_frequency(freq)
elif self[TYPE_KEY] == 'sweep':
#there is no set sensitivity, redo fg
self[TYPE_KEY] = self[TYPE_KEY]
return True
def set_waveform2_freq(self, freq):
if freq is None:
self[WAVEFORM2_FREQ_KEY] = -self[WAVEFORM_FREQ_KEY]
return
if self[TYPE_KEY] == "2tone":
self._src2.set_frequency(freq)
elif self[TYPE_KEY] == "sweep":
self._src1.set_frequency(freq)
return True
def set_waveform(self, type):
self.lock()
self.disconnect_all()
if type == analog.GR_SIN_WAVE or type == analog.GR_CONST_WAVE:
self._src = analog.sig_source_c(self[SAMP_RATE_KEY], # Sample rate
type, # Waveform type
self[WAVEFORM_FREQ_KEY], # Waveform frequency
self[AMPLITUDE_KEY], # Waveform amplitude
self[WAVEFORM_OFFSET_KEY]) # Waveform offset
elif type == analog.GR_GAUSSIAN or type == analog.GR_UNIFORM:
self._src = analog.noise_source_c(type, self[AMPLITUDE_KEY])
elif type == "2tone":
self._src1 = analog.sig_source_c(self[SAMP_RATE_KEY],
analog.GR_SIN_WAVE,
self[WAVEFORM_FREQ_KEY],
self[AMPLITUDE_KEY]/2.0,
0)
if(self[WAVEFORM2_FREQ_KEY] is None):
self[WAVEFORM2_FREQ_KEY] = -self[WAVEFORM_FREQ_KEY]
self._src2 = analog.sig_source_c(self[SAMP_RATE_KEY],
analog.GR_SIN_WAVE,
self[WAVEFORM2_FREQ_KEY],
self[AMPLITUDE_KEY]/2.0,
0)
self._src = blocks.add_cc()
self.connect(self._src1,(self._src,0))
self.connect(self._src2,(self._src,1))
elif type == "sweep":
# rf freq is center frequency
# waveform_freq is total swept width
# waveform2_freq is sweep rate
# will sweep from (rf_freq-waveform_freq/2) to (rf_freq+waveform_freq/2)
if self[WAVEFORM2_FREQ_KEY] is None:
self[WAVEFORM2_FREQ_KEY] = 0.1
self._src1 = analog.sig_source_f(self[SAMP_RATE_KEY],
analog.GR_TRI_WAVE,
self[WAVEFORM2_FREQ_KEY],
1.0,
-0.5)
self._src2 = analog.frequency_modulator_fc(self[WAVEFORM_FREQ_KEY]*2*math.pi/self[SAMP_RATE_KEY])
self._src = blocks.multiply_const_cc(self[AMPLITUDE_KEY])
self.connect(self._src1,self._src2,self._src)
elif type == "gsm":
self._src = gsm_source_c(self[SAMP_RATE_KEY], self[AMPLITUDE_KEY])
else:
raise RuntimeError("Unknown waveform type")
self.connect(self._src, self._sink)
self.unlock()
if self._verbose:
print "Set baseband modulation to:", waveforms[type]
if type == analog.GR_SIN_WAVE:
print "Modulation frequency: %sHz" % (n2s(self[WAVEFORM_FREQ_KEY]),)
print "Initial phase:", self[WAVEFORM_OFFSET_KEY]
elif type == "2tone":
print "Tone 1: %sHz" % (n2s(self[WAVEFORM_FREQ_KEY]),)
print "Tone 2: %sHz" % (n2s(self[WAVEFORM2_FREQ_KEY]),)
elif type == "sweep":
print "Sweeping across %sHz to %sHz" % (n2s(-self[WAVEFORM_FREQ_KEY]/2.0),n2s(self[WAVEFORM_FREQ_KEY]/2.0))
print "Sweep rate: %sHz" % (n2s(self[WAVEFORM2_FREQ_KEY]),)
elif type == "gsm":
print "GSM Burst Sequence"
print "TX amplitude:", self[AMPLITUDE_KEY]
def set_amplitude(self, amplitude):
if amplitude < 0.0 or amplitude > 1.0:
if self._verbose:
print "Amplitude out of range:", amplitude
return False
if self[TYPE_KEY] in (analog.GR_SIN_WAVE, analog.GR_CONST_WAVE, analog.GR_GAUSSIAN, analog.GR_UNIFORM):
self._src.set_amplitude(amplitude)
elif self[TYPE_KEY] == "2tone":
self._src1.set_amplitude(amplitude/2.0)
self._src2.set_amplitude(amplitude/2.0)
elif self[TYPE_KEY] == "sweep":
self._src.set_k(amplitude)
elif self[TYPE_KEY] == "gsm":
self._src.set_amplitude(amplitude)
else:
return True # Waveform not yet set
if self._verbose:
print "Set amplitude to:", amplitude
return True
def get_options():
usage="%prog: [options]"
parser = OptionParser(option_class=eng_option, usage=usage)
parser.add_option("-a", "--args", type="string", default="",
help="Device args, [default=%default]")
parser.add_option("-A", "--antenna", type="string", default=None,
help="Select Rx Antenna where appropriate")
parser.add_option("-s", "--samp-rate", type="eng_float", default=None,
help="Set sample rate (bandwidth), minimum by default")
parser.add_option("-g", "--gain", type="eng_float", default=None,
help="Set gain in dB (default is midpoint)")
parser.add_option("-G", "--gains", type="string", default=None,
help="Set named gain in dB, name:gain,name:gain,...")
parser.add_option("-f", "--tx-freq", type="eng_float", default=None,
help="Set carrier frequency to FREQ [default=mid-point]",
metavar="FREQ")
parser.add_option("-c", "--freq-corr", type="int", default=None,
help="Set carrier frequency correction [default=0]")
parser.add_option("-x", "--waveform-freq", type="eng_float", default=0,
help="Set baseband waveform frequency to FREQ [default=%default]")
parser.add_option("-y", "--waveform2-freq", type="eng_float", default=None,
help="Set 2nd waveform frequency to FREQ [default=%default]")
parser.add_option("--sine", dest="type", action="store_const", const=analog.GR_SIN_WAVE,
help="Generate a carrier modulated by a complex sine wave",
default=analog.GR_SIN_WAVE)
parser.add_option("--const", dest="type", action="store_const", const=analog.GR_CONST_WAVE,
help="Generate a constant carrier")
parser.add_option("--offset", type="eng_float", default=0,
help="Set waveform phase offset to OFFSET [default=%default]")
parser.add_option("--gaussian", dest="type", action="store_const", const=analog.GR_GAUSSIAN,
help="Generate Gaussian random output")
parser.add_option("--uniform", dest="type", action="store_const", const=analog.GR_UNIFORM,
help="Generate Uniform random output")
parser.add_option("--2tone", dest="type", action="store_const", const="2tone",
help="Generate Two Tone signal for IMD testing")
parser.add_option("--sweep", dest="type", action="store_const", const="sweep",
help="Generate a swept sine wave")
parser.add_option("--gsm", dest="type", action="store_const", const="gsm",
help="Generate GMSK modulated GSM Burst Sequence")
parser.add_option("", "--amplitude", type="eng_float", default=0.3,
help="Set output amplitude to AMPL (0.1-1.0) [default=%default]",
metavar="AMPL")
parser.add_option("-v", "--verbose", action="store_true", default=False,
help="Use verbose console output [default=%default]")
(options, args) = parser.parse_args()
return (options, args)
# If this script is executed, the following runs. If it is imported,
# the below does not run.
def test_main():
if gr.enable_realtime_scheduling() != gr.RT_OK:
print "Note: failed to enable realtime scheduling, continuing"
# Grab command line options and create top block
try:
(options, args) = get_options()
tb = top_block(options, args)
except RuntimeError, e:
print e
sys.exit(1)
tb.start()
raw_input('Press Enter to quit: ')
tb.stop()
tb.wait()
# Make sure to create the top block (tb) within a function:
# That code in main will allow tb to go out of scope on return,
# which will call the decontructor on radio and stop transmit.
# Whats odd is that grc works fine with tb in the __main__,
# perhaps its because the try/except clauses around tb.
if __name__ == "__main__":
test_main()
|