1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
|
/* -*- c++ -*- */
/*
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
* Copyright 2014 Hoernchen <la@tfc-server.de>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdexcept>
#include <iostream>
#include <algorithm>
#ifdef USE_AVX
#include <immintrin.h>
#elif USE_SSE2
#include <emmintrin.h>
#endif
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/detail/endian.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/io_signature.h>
#include "hackrf_sink_c.h"
#include "arg_helpers.h"
using namespace boost::assign;
#define BUF_LEN (16 * 32 * 512) /* must be multiple of 512 */
#define BUF_NUM 15
#define BYTES_PER_SAMPLE 2 /* HackRF device consumes 8 bit unsigned IQ data */
#define HACKRF_FORMAT_ERROR(ret) \
boost::str( boost::format("(%d) %s") \
% ret % hackrf_error_name((enum hackrf_error)ret) ) \
#define HACKRF_THROW_ON_ERROR(ret, msg) \
if ( ret != HACKRF_SUCCESS ) \
throw std::runtime_error( boost::str( boost::format(msg " (%d) %s") \
% ret % hackrf_error_name((enum hackrf_error)ret) ) );
#define HACKRF_FUNC_STR(func, arg) \
boost::str(boost::format(func "(%d)") % arg) + " has failed"
static inline bool cb_init(circular_buffer_t *cb, size_t capacity, size_t sz)
{
cb->buffer = malloc(capacity * sz);
if(cb->buffer == NULL)
return false; // handle error
cb->buffer_end = (int8_t *)cb->buffer + capacity * sz;
cb->capacity = capacity;
cb->count = 0;
cb->sz = sz;
cb->head = cb->buffer;
cb->tail = cb->buffer;
return true;
}
static inline void cb_free(circular_buffer_t *cb)
{
free(cb->buffer);
cb->buffer = NULL;
// clear out other fields too, just to be safe
cb->buffer_end = 0;
cb->capacity = 0;
cb->count = 0;
cb->sz = 0;
cb->head = 0;
cb->tail = 0;
}
static inline bool cb_has_room(circular_buffer_t *cb)
{
if(cb->count == cb->capacity)
return false;
return true;
}
static inline bool cb_push_back(circular_buffer_t *cb, const void *item)
{
if(cb->count == cb->capacity)
return false; // handle error
memcpy(cb->head, item, cb->sz);
cb->head = (int8_t *)cb->head + cb->sz;
if(cb->head == cb->buffer_end)
cb->head = cb->buffer;
cb->count++;
return true;
}
static inline bool cb_pop_front(circular_buffer_t *cb, void *item)
{
if(cb->count == 0)
return false; // handle error
memcpy(item, cb->tail, cb->sz);
cb->tail = (int8_t *)cb->tail + cb->sz;
if(cb->tail == cb->buffer_end)
cb->tail = cb->buffer;
cb->count--;
return true;
}
int hackrf_sink_c::_usage = 0;
boost::mutex hackrf_sink_c::_usage_mutex;
hackrf_sink_c_sptr make_hackrf_sink_c (const std::string & args)
{
return gnuradio::get_initial_sptr(new hackrf_sink_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr::block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 0; // maximum number of output streams
/*
* The private constructor
*/
hackrf_sink_c::hackrf_sink_c (const std::string &args)
: gr::sync_block ("hackrf_sink_c",
gr::io_signature::make(MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make(MIN_OUT, MAX_OUT, sizeof (gr_complex))),
_dev(NULL),
_buf(NULL),
_sample_rate(0),
_center_freq(0),
_freq_corr(0),
_auto_gain(false),
_amp_gain(0),
_vga_gain(0),
_bandwidth(0)
{
int ret;
std::string *hackrf_serial = NULL;
dict_t dict = params_to_dict(args);
if (dict.count("hackrf") && dict["hackrf"].length() > 0)
hackrf_serial = &dict["hackrf"];
_buf_num = 0;
if (dict.count("buffers"))
_buf_num = boost::lexical_cast< unsigned int >( dict["buffers"] );
if (0 == _buf_num)
_buf_num = BUF_NUM;
{
boost::mutex::scoped_lock lock( _usage_mutex );
if ( _usage == 0 )
hackrf_init(); /* call only once before the first open */
_usage++;
}
_dev = NULL;
#ifdef LIBHACKRF_HAVE_DEVICE_LIST
if ( hackrf_serial )
ret = hackrf_open_by_serial( hackrf_serial->c_str(), &_dev );
else
#endif
ret = hackrf_open( &_dev );
HACKRF_THROW_ON_ERROR(ret, "Failed to open HackRF device")
uint8_t board_id;
ret = hackrf_board_id_read( _dev, &board_id );
HACKRF_THROW_ON_ERROR(ret, "Failed to get HackRF board id")
char version[40];
memset(version, 0, sizeof(version));
ret = hackrf_version_string_read( _dev, version, sizeof(version));
HACKRF_THROW_ON_ERROR(ret, "Failed to read version string")
#if 0
read_partid_serialno_t serial_number;
ret = hackrf_board_partid_serialno_read( _dev, &serial_number );
HACKRF_THROW_ON_ERROR(ret, "Failed to read serial number")
#endif
std::cerr << "Using " << hackrf_board_id_name(hackrf_board_id(board_id)) << " "
<< "with firmware " << version << " "
<< std::endl;
if ( BUF_NUM != _buf_num ) {
std::cerr << "Using " << _buf_num << " buffers of size " << BUF_LEN << "."
<< std::endl;
}
set_center_freq( (get_freq_range().start() + get_freq_range().stop()) / 2.0 );
set_sample_rate( get_sample_rates().start() );
set_bandwidth( 0 );
set_gain( 0 ); /* disable AMP gain stage by default to protect full sprectrum pre-amp from physical damage */
set_if_gain( 16 ); /* preset to a reasonable default (non-GRC use case) */
// Check device args to find out if bias/phantom power is desired.
if ( dict.count("bias_tx") ) {
bool bias = boost::lexical_cast<bool>( dict["bias_tx"] );
ret = hackrf_set_antenna_enable(_dev, static_cast<uint8_t>(bias));
if ( ret != HACKRF_SUCCESS )
{
std::cerr << "Failed to apply antenna bias voltage state: " << bias << " " << HACKRF_FORMAT_ERROR(ret) << std::endl;
}
else
{
std::cerr << (bias ? "Enabled" : "Disabled") << " antenna bias voltage" << std::endl;
}
}
_buf = (int8_t *) malloc( BUF_LEN );
cb_init( &_cbuf, _buf_num, BUF_LEN );
// _thread = gr::thread::thread(_hackrf_wait, this);
ret = hackrf_start_tx( _dev, _hackrf_tx_callback, (void *)this );
HACKRF_THROW_ON_ERROR(ret, "Failed to start TX streaming")
}
/*
* Our virtual destructor.
*/
hackrf_sink_c::~hackrf_sink_c ()
{
if (_dev) {
// _thread.join();
int ret = hackrf_stop_tx( _dev );
HACKRF_THROW_ON_ERROR(ret, "Failed to stop TX streaming")
ret = hackrf_close( _dev );
HACKRF_THROW_ON_ERROR(ret, "Failed to close HackRF")
_dev = NULL;
{
boost::mutex::scoped_lock lock( _usage_mutex );
_usage--;
if ( _usage == 0 )
hackrf_exit(); /* call only once after last close */
}
}
free(_buf);
_buf = NULL;
cb_free( &_cbuf );
}
int hackrf_sink_c::_hackrf_tx_callback(hackrf_transfer *transfer)
{
hackrf_sink_c *obj = (hackrf_sink_c *)transfer->tx_ctx;
return obj->hackrf_tx_callback(transfer->buffer, transfer->valid_length);
}
int hackrf_sink_c::hackrf_tx_callback(unsigned char *buffer, uint32_t length)
{
#if 0
for (unsigned int i = 0; i < length; ++i) /* simulate noise */
*buffer++ = rand() % 255;
#else
{
boost::mutex::scoped_lock lock( _buf_mutex );
if ( ! cb_pop_front( &_cbuf, buffer ) ) {
memset(buffer, 0, length);
std::cerr << "U" << std::flush;
} else {
// std::cerr << "-" << std::flush;
_buf_cond.notify_one();
}
}
#endif
return 0; // TODO: return -1 on error/stop
}
void hackrf_sink_c::_hackrf_wait(hackrf_sink_c *obj)
{
obj->hackrf_wait();
}
void hackrf_sink_c::hackrf_wait()
{
}
bool hackrf_sink_c::start()
{
if ( ! _dev )
return false;
_buf_used = 0;
#if 0
int ret = hackrf_start_tx( _dev, _hackrf_tx_callback, (void *)this );
if ( ret != HACKRF_SUCCESS ) {
std::cerr << "Failed to start TX streaming (" << ret << ")" << std::endl;
return false;
}
#endif
return true;
}
bool hackrf_sink_c::stop()
{
if ( ! _dev )
return false;
#if 0
int ret = hackrf_stop_tx( _dev );
if ( ret != HACKRF_SUCCESS ) {
std::cerr << "Failed to stop TX streaming (" << ret << ")" << std::endl;
return false;
}
#endif
return true;
}
#ifdef USE_AVX
void convert_avx(const float* inbuf, int8_t* outbuf,const unsigned int count)
{
__m256 mulme = _mm256_set_ps(127.0f, 127.0f, 127.0f, 127.0f, 127.0f, 127.0f, 127.0f, 127.0f);
for(unsigned int i=0; i<count;i++){
__m256i itmp3 = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_loadu_ps(&inbuf[i*16+0]), mulme));
__m256i itmp4 = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_loadu_ps(&inbuf[i*16+8]), mulme));
__m128i a1 = _mm256_extractf128_si256(itmp3, 1);
__m128i a0 = _mm256_castsi256_si128(itmp3);
__m128i a3 = _mm256_extractf128_si256(itmp4, 1);
__m128i a2 = _mm256_castsi256_si128(itmp4);
__m128i outshorts1 = _mm_packs_epi32(a0, a1);
__m128i outshorts2 = _mm_packs_epi32(a2, a3);
__m128i outbytes = _mm_packs_epi16(outshorts1, outshorts2);
_mm_storeu_si128 ((__m128i*)&outbuf[i*16], outbytes);
}
}
#elif USE_SSE2
void convert_sse2(const float* inbuf, int8_t* outbuf,const unsigned int count)
{
const register __m128 mulme = _mm_set_ps( 127.0f, 127.0f, 127.0f, 127.0f );
__m128 itmp1,itmp2,itmp3,itmp4;
__m128i otmp1,otmp2,otmp3,otmp4;
__m128i outshorts1,outshorts2;
__m128i outbytes;
for(unsigned int i=0; i<count;i++){
itmp1 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+0]), mulme);
itmp2 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+4]), mulme);
itmp3 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+8]), mulme);
itmp4 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+12]), mulme);
otmp1 = _mm_cvtps_epi32(itmp1);
otmp2 = _mm_cvtps_epi32(itmp2);
otmp3 = _mm_cvtps_epi32(itmp3);
otmp4 = _mm_cvtps_epi32(itmp4);
outshorts1 = _mm_packs_epi32(otmp1, otmp2);
outshorts2 = _mm_packs_epi32(otmp3, otmp4);
outbytes = _mm_packs_epi16(outshorts1, outshorts2);
_mm_storeu_si128 ((__m128i*)&outbuf[i*16], outbytes);
}
}
#endif
void convert_default(float* inbuf, int8_t* outbuf,const unsigned int count)
{
for(unsigned int i=0; i<count;i++){
outbuf[i]= inbuf[i]*127;
}
}
int hackrf_sink_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
const gr_complex *in = (const gr_complex *) input_items[0];
{
boost::mutex::scoped_lock lock( _buf_mutex );
while ( ! cb_has_room(&_cbuf) )
_buf_cond.wait( lock );
}
int8_t *buf = _buf + _buf_used;
unsigned int prev_buf_used = _buf_used;
unsigned int remaining = (BUF_LEN-_buf_used)/2; //complex
unsigned int count = std::min((unsigned int)noutput_items,remaining);
unsigned int sse_rem = count/8; // 8 complex = 16f==512bit for avx
unsigned int nosse_rem = count%8; // remainder
#ifdef USE_AVX
convert_avx((float*)in, buf, sse_rem);
convert_default((float*)(in+sse_rem*8), buf+(sse_rem*8*2), nosse_rem*2);
#elif USE_SSE2
convert_sse2((float*)in, buf, sse_rem);
convert_default((float*)(in+sse_rem*8), buf+(sse_rem*8*2), nosse_rem*2);
#else
convert_default((float*)in, buf, count*2);
#endif
_buf_used += (sse_rem*8+nosse_rem)*2;
int items_consumed = sse_rem*8+nosse_rem;
if((unsigned int)noutput_items >= remaining) {
{
boost::mutex::scoped_lock lock( _buf_mutex );
if ( ! cb_push_back( &_cbuf, _buf ) ) {
_buf_used = prev_buf_used;
items_consumed = 0;
std::cerr << "O" << std::flush;
} else {
// std::cerr << "+" << std::flush;
_buf_used = 0;
}
}
}
// Tell runtime system how many input items we consumed on
// each input stream.
consume_each(items_consumed);
// Tell runtime system how many output items we produced.
return 0;
}
std::vector<std::string> hackrf_sink_c::get_devices()
{
std::vector<std::string> devices;
std::string label;
{
boost::mutex::scoped_lock lock( _usage_mutex );
if ( _usage == 0 )
hackrf_init(); /* call only once before the first open */
_usage++;
}
#ifdef LIBHACKRF_HAVE_DEVICE_LIST
hackrf_device_list_t *list = hackrf_device_list();
for (int i = 0; i < list->devicecount; i++) {
label = "HackRF ";
label += hackrf_usb_board_id_name( list->usb_board_ids[i] );
std::string args;
if (list->serial_numbers[i]) {
std::string serial = boost::lexical_cast< std::string >( list->serial_numbers[i] );
if (serial.length() > 6)
serial = serial.substr(serial.length() - 6, 6);
args = "hackrf=" + serial;
label += " " + serial;
} else
args = "hackrf"; /* will pick the first one, serial number is required for choosing a specific one */
boost::algorithm::trim(label);
args += ",label='" + label + "'";
devices.push_back( args );
}
hackrf_device_list_free(list);
#else
int ret;
hackrf_device *dev = NULL;
ret = hackrf_open(&dev);
if ( HACKRF_SUCCESS == ret )
{
std::string args = "hackrf=0";
label = "HackRF";
uint8_t board_id;
ret = hackrf_board_id_read( dev, &board_id );
if ( HACKRF_SUCCESS == ret )
{
label += std::string(" ") + hackrf_board_id_name(hackrf_board_id(board_id));
}
args += ",label='" + label + "'";
devices.push_back( args );
ret = hackrf_close(dev);
}
#endif
{
boost::mutex::scoped_lock lock( _usage_mutex );
_usage--;
if ( _usage == 0 )
hackrf_exit(); /* call only once after last close */
}
return devices;
}
size_t hackrf_sink_c::get_num_channels()
{
return 1;
}
osmosdr::meta_range_t hackrf_sink_c::get_sample_rates()
{
osmosdr::meta_range_t range;
/* we only add integer rates here because of better phase noise performance.
* the user is allowed to request arbitrary (fractional) rates within these
* boundaries. */
range += osmosdr::range_t( 8e6 );
range += osmosdr::range_t( 10e6 );
range += osmosdr::range_t( 12.5e6 );
range += osmosdr::range_t( 16e6 );
range += osmosdr::range_t( 20e6 ); /* confirmed to work on fast machines */
return range;
}
double hackrf_sink_c::set_sample_rate( double rate )
{
int ret;
if (_dev) {
ret = hackrf_set_sample_rate( _dev, rate );
if ( HACKRF_SUCCESS == ret ) {
_sample_rate = rate;
//set_bandwidth( 0.0 ); /* bandwidth of 0 means automatic filter selection */
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_sample_rate", rate ) )
}
}
return get_sample_rate();
}
double hackrf_sink_c::get_sample_rate()
{
return _sample_rate;
}
osmosdr::freq_range_t hackrf_sink_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( _sample_rate / 2, 7250e6 - _sample_rate / 2 );
return range;
}
double hackrf_sink_c::set_center_freq( double freq, size_t chan )
{
int ret;
#define APPLY_PPM_CORR(val, ppm) ((val) * (1.0 + (ppm) * 0.000001))
if (_dev) {
double corr_freq = APPLY_PPM_CORR( freq, _freq_corr );
ret = hackrf_set_freq( _dev, uint64_t(corr_freq) );
if ( HACKRF_SUCCESS == ret ) {
_center_freq = freq;
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_freq", corr_freq ) )
}
}
return get_center_freq( chan );
}
double hackrf_sink_c::get_center_freq( size_t chan )
{
return _center_freq;
}
double hackrf_sink_c::set_freq_corr( double ppm, size_t chan )
{
_freq_corr = ppm;
set_center_freq( _center_freq );
return get_freq_corr( chan );
}
double hackrf_sink_c::get_freq_corr( size_t chan )
{
return _freq_corr;
}
std::vector<std::string> hackrf_sink_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "RF";
names += "IF";
return names;
}
osmosdr::gain_range_t hackrf_sink_c::get_gain_range( size_t chan )
{
return get_gain_range( "RF", chan );
}
osmosdr::gain_range_t hackrf_sink_c::get_gain_range( const std::string & name, size_t chan )
{
if ( "RF" == name ) {
return osmosdr::gain_range_t( 0, 14, 14 );
}
if ( "IF" == name ) {
return osmosdr::gain_range_t( 0, 47, 1 );
}
return osmosdr::gain_range_t();
}
bool hackrf_sink_c::set_gain_mode( bool automatic, size_t chan )
{
_auto_gain = automatic;
return get_gain_mode(chan);
}
bool hackrf_sink_c::get_gain_mode( size_t chan )
{
return _auto_gain;
}
double hackrf_sink_c::set_gain( double gain, size_t chan )
{
int ret;
osmosdr::gain_range_t rf_gains = get_gain_range( "RF", chan );
if (_dev) {
double clip_gain = rf_gains.clip( gain, true );
uint8_t value = clip_gain == 14.0f ? 1 : 0;
ret = hackrf_set_amp_enable( _dev, value );
if ( HACKRF_SUCCESS == ret ) {
_amp_gain = clip_gain;
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_amp_enable", value ) )
}
}
return _amp_gain;
}
double hackrf_sink_c::set_gain( double gain, const std::string & name, size_t chan)
{
if ( "RF" == name ) {
return set_gain( gain, chan );
}
if ( "IF" == name ) {
return set_if_gain( gain, chan );
}
return set_gain( gain, chan );
}
double hackrf_sink_c::get_gain( size_t chan )
{
return _amp_gain;
}
double hackrf_sink_c::get_gain( const std::string & name, size_t chan )
{
if ( "RF" == name ) {
return get_gain( chan );
}
if ( "IF" == name ) {
return _vga_gain;
}
return get_gain( chan );
}
double hackrf_sink_c::set_if_gain( double gain, size_t chan )
{
int ret;
osmosdr::gain_range_t if_gains = get_gain_range( "IF", chan );
if (_dev) {
double clip_gain = if_gains.clip( gain, true );
ret = hackrf_set_txvga_gain( _dev, uint32_t(clip_gain) );
if ( HACKRF_SUCCESS == ret ) {
_vga_gain = clip_gain;
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_txvga_gain", clip_gain ) )
}
}
return _vga_gain;
}
double hackrf_sink_c::set_bb_gain( double gain, size_t chan )
{
return 0;
}
std::vector< std::string > hackrf_sink_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string hackrf_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string hackrf_sink_c::get_antenna( size_t chan )
{
return "TX/RX";
}
double hackrf_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
// osmosdr::freq_range_t bandwidths = get_bandwidth_range( chan );
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = _sample_rate * 0.75; /* select narrower filters to prevent aliasing */
if ( _dev ) {
/* compute best default value depending on sample rate (auto filter) */
uint32_t bw = hackrf_compute_baseband_filter_bw( uint32_t(bandwidth) );
ret = hackrf_set_baseband_filter_bandwidth( _dev, bw );
if ( HACKRF_SUCCESS == ret ) {
_bandwidth = bw;
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_baseband_filter_bandwidth", bw ) )
}
}
return _bandwidth;
}
double hackrf_sink_c::get_bandwidth( size_t chan )
{
return _bandwidth;
}
osmosdr::freq_range_t hackrf_sink_c::get_bandwidth_range( size_t chan )
{
osmosdr::freq_range_t bandwidths;
// TODO: read out from libhackrf when an API is available
bandwidths += osmosdr::range_t( 1750000 );
bandwidths += osmosdr::range_t( 2500000 );
bandwidths += osmosdr::range_t( 3500000 );
bandwidths += osmosdr::range_t( 5000000 );
bandwidths += osmosdr::range_t( 5500000 );
bandwidths += osmosdr::range_t( 6000000 );
bandwidths += osmosdr::range_t( 7000000 );
bandwidths += osmosdr::range_t( 8000000 );
bandwidths += osmosdr::range_t( 9000000 );
bandwidths += osmosdr::range_t( 10000000 );
bandwidths += osmosdr::range_t( 12000000 );
bandwidths += osmosdr::range_t( 14000000 );
bandwidths += osmosdr::range_t( 15000000 );
bandwidths += osmosdr::range_t( 20000000 );
bandwidths += osmosdr::range_t( 24000000 );
bandwidths += osmosdr::range_t( 28000000 );
return bandwidths;
}
|