1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/* -*- c++ -*- */
/*
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdexcept>
#include <iostream>
#include <algorithm>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/io_signature.h>
#include "airspyhf_source_c.h"
#include "arg_helpers.h"
using namespace boost::assign;
#define AIRSPYHF_FORMAT_ERROR(ret, msg) \
boost::str( boost::format(msg " (%1%)") % ret )
#define AIRSPYHF_THROW_ON_ERROR(ret, msg) \
if ( ret != AIRSPYHF_SUCCESS ) \
{ \
throw std::runtime_error( AIRSPYHF_FORMAT_ERROR(ret, msg) ); \
}
#define AIRSPYHF_FUNC_STR(func, arg) \
boost::str(boost::format(func "(%1%)") % arg) + " has failed"
airspyhf_source_c_sptr make_airspyhf_source_c (const std::string & args)
{
return gnuradio::get_initial_sptr(new airspyhf_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr::block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
airspyhf_source_c::airspyhf_source_c (const std::string &args)
: gr::sync_block ("airspyhf_source_c",
gr::io_signature::make(MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make(MIN_OUT, MAX_OUT, sizeof (gr_complex))),
_dev(NULL),
_sample_rate(0),
_center_freq(0),
_freq_corr(0)
{
int ret;
dict_t dict = params_to_dict(args);
_dev = NULL;
ret = airspyhf_open( &_dev );
AIRSPYHF_THROW_ON_ERROR(ret, "Failed to open Airspy HF+ device")
uint32_t num_rates;
airspyhf_get_samplerates(_dev, &num_rates, 0);
uint32_t *samplerates = (uint32_t *) malloc(num_rates * sizeof(uint32_t));
airspyhf_get_samplerates(_dev, samplerates, num_rates);
for (size_t i = 0; i < num_rates; i++)
_sample_rates.push_back( std::pair<double, uint32_t>( samplerates[i], i ) );
free(samplerates);
/* since they may (and will) give us an unsorted array we have to sort it here
* to play nice with the monotonic requirement of meta-range later on */
std::sort(_sample_rates.begin(), _sample_rates.end());
std::cerr << "Using libairspyhf" << AIRSPYHF_VERSION << ", samplerates: ";
for (size_t i = 0; i < _sample_rates.size(); i++)
std::cerr << boost::format("%gM ") % (_sample_rates[i].first / 1e6);
std::cerr << std::endl;
set_center_freq( (get_freq_range().start() + get_freq_range().stop()) / 2.0 );
set_sample_rate( get_sample_rates().start() );
_fifo = new boost::circular_buffer<gr_complex>(5000000);
if (!_fifo) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Failed to allocate a sample FIFO!" );
}
}
/*
* Our virtual destructor.
*/
airspyhf_source_c::~airspyhf_source_c ()
{
int ret;
if (_dev) {
if ( airspyhf_is_streaming( _dev ) )
{
ret = airspyhf_stop( _dev );
if ( ret != AIRSPYHF_SUCCESS )
{
std::cerr << AIRSPYHF_FORMAT_ERROR(ret, "Failed to stop RX streaming") << std::endl;
}
}
ret = airspyhf_close( _dev );
if ( ret != AIRSPYHF_SUCCESS )
{
std::cerr << AIRSPYHF_FORMAT_ERROR(ret, "Failed to close AirSpy") << std::endl;
}
_dev = NULL;
}
if (_fifo)
{
delete _fifo;
_fifo = NULL;
}
}
int airspyhf_source_c::_airspyhf_rx_callback(airspyhf_transfer_t *transfer)
{
airspyhf_source_c *obj = (airspyhf_source_c *)transfer->ctx;
return obj->airspyhf_rx_callback((float *)transfer->samples, transfer->sample_count);
}
int airspyhf_source_c::airspyhf_rx_callback(void *samples, int sample_count)
{
size_t i, n_avail, to_copy, num_samples = sample_count;
float *sample = (float *)samples;
_fifo_lock.lock();
n_avail = _fifo->capacity() - _fifo->size();
to_copy = (n_avail < num_samples ? n_avail : num_samples);
for (i = 0; i < to_copy; i++ )
{
/* Push sample to the fifo */
_fifo->push_back( gr_complex( *sample, *(sample+1) ) );
/* offset to the next I+Q sample */
sample += 2;
}
_fifo_lock.unlock();
/* We have made some new samples available to the consumer in work() */
if (to_copy) {
//std::cerr << "+" << std::flush;
_samp_avail.notify_one();
}
/* Indicate overrun, if neccesary */
if (to_copy < num_samples)
std::cerr << "O" << std::flush;
return 0; // TODO: return -1 on error/stop
}
bool airspyhf_source_c::start()
{
if ( ! _dev )
return false;
int ret = airspyhf_start( _dev, _airspyhf_rx_callback, (void *)this );
if ( ret != AIRSPYHF_SUCCESS ) {
std::cerr << "Failed to start RX streaming (" << ret << ")" << std::endl;
return false;
}
return true;
}
bool airspyhf_source_c::stop()
{
if ( ! _dev )
return false;
int ret = airspyhf_stop( _dev );
if ( ret != AIRSPYHF_SUCCESS ) {
std::cerr << "Failed to stop RX streaming (" << ret << ")" << std::endl;
return false;
}
return true;
}
int airspyhf_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
gr_complex *out = (gr_complex *)output_items[0];
bool running = false;
if ( _dev )
running = airspyhf_is_streaming( _dev );
if ( ! running )
return WORK_DONE;
std::unique_lock<std::mutex> lock(_fifo_lock);
/* Wait until we have the requested number of samples */
int n_samples_avail = _fifo->size();
while (n_samples_avail < noutput_items) {
_samp_avail.wait(lock);
n_samples_avail = _fifo->size();
}
for(int i = 0; i < noutput_items; ++i) {
out[i] = _fifo->at(0);
_fifo->pop_front();
}
return noutput_items;
}
std::vector<std::string> airspyhf_source_c::get_devices()
{
std::vector<std::string> devices;
std::string label;
int ret;
airspyhf_device *dev = NULL;
ret = airspyhf_open(&dev);
if ( AIRSPYHF_SUCCESS == ret )
{
std::string args = "airspyhf=0,label='AirspyHF'";
devices.push_back( args );
ret = airspyhf_close(dev);
}
return devices;
}
size_t airspyhf_source_c::get_num_channels()
{
return 1;
}
osmosdr::meta_range_t airspyhf_source_c::get_sample_rates()
{
osmosdr::meta_range_t range;
for (size_t i = 0; i < _sample_rates.size(); i++)
range += osmosdr::range_t( _sample_rates[i].first );
return range;
}
double airspyhf_source_c::set_sample_rate( double rate )
{
int ret = AIRSPYHF_SUCCESS;
if (_dev) {
bool found_supported_rate = false;
uint32_t samp_rate_index = 0;
for( unsigned int i = 0; i < _sample_rates.size(); i++ )
{
if( _sample_rates[i].first == rate )
{
samp_rate_index = _sample_rates[i].second;
found_supported_rate = true;
}
}
if ( ! found_supported_rate )
{
throw std::runtime_error(
boost::str( boost::format("Unsupported samplerate: %gM") % (rate/1e6) ) );
}
ret = airspyhf_set_samplerate( _dev, samp_rate_index );
if ( AIRSPYHF_SUCCESS == ret ) {
_sample_rate = rate;
} else {
AIRSPYHF_THROW_ON_ERROR( ret, AIRSPYHF_FUNC_STR( "airspyhf_set_samplerate", rate ) )
}
}
return get_sample_rate();
}
double airspyhf_source_c::get_sample_rate()
{
return _sample_rate;
}
osmosdr::freq_range_t airspyhf_source_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( 0.0, 260.0e6 );
return range;
}
double airspyhf_source_c::set_center_freq( double freq, size_t chan )
{
int ret;
if (_dev) {
ret = airspyhf_set_freq( _dev, freq );
if ( AIRSPYHF_SUCCESS == ret ) {
_center_freq = freq;
} else {
AIRSPYHF_THROW_ON_ERROR( ret, AIRSPYHF_FUNC_STR( "airspyhf_set_freq", freq ) )
}
}
return get_center_freq( chan );
}
double airspyhf_source_c::get_center_freq( size_t chan )
{
return _center_freq;
}
double airspyhf_source_c::set_freq_corr( double ppm, size_t chan )
{
int ret;
int32_t ppb = (int32_t) (ppm * 1.0e3);
if (_dev) {
ret = airspyhf_set_calibration( _dev, ppb );
if ( AIRSPYHF_SUCCESS == ret ) {
_freq_corr = ppm;
} else {
AIRSPYHF_THROW_ON_ERROR( ret, AIRSPYHF_FUNC_STR( "airspyhf_set_calibration", ppm ) )
}
}
return ppm;
}
double airspyhf_source_c::get_freq_corr( size_t chan )
{
return _freq_corr;
}
std::vector<std::string> airspyhf_source_c::get_gain_names( size_t chan )
{
return {};
}
osmosdr::gain_range_t airspyhf_source_c::get_gain_range( size_t chan )
{
return osmosdr::gain_range_t();
}
osmosdr::gain_range_t airspyhf_source_c::get_gain_range( const std::string & name, size_t chan )
{
return osmosdr::gain_range_t();
}
double airspyhf_source_c::set_gain( double gain, size_t chan )
{
return gain;
}
double airspyhf_source_c::set_gain( double gain, const std::string & name, size_t chan)
{
return gain;
}
double airspyhf_source_c::get_gain( size_t chan )
{
return 0.0;
}
double airspyhf_source_c::get_gain( const std::string & name, size_t chan )
{
return 0.0;
}
std::vector< std::string > airspyhf_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string airspyhf_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string airspyhf_source_c::get_antenna( size_t chan )
{
return "RX";
}
|