1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#include "freesrp_sink_c.h"
freesrp_sink_c_sptr make_freesrp_sink_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new freesrp_sink_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 1 input and 0 output.
*/
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 0; // maximum number of output streams
freesrp_sink_c::freesrp_sink_c (const std::string & args) : gr::sync_block("freesrp_sink_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))),
freesrp_common(args)
{
if(_srp == nullptr)
{
throw std::runtime_error("FreeSRP not initialized!");
}
}
bool freesrp_sink_c::start()
{
FreeSRP::response res = _srp->send_cmd({FreeSRP::SET_DATAPATH_EN, 1});
if(res.error != FreeSRP::CMD_OK)
{
return false;
}
_srp->start_tx(std::bind(&freesrp_sink_c::freesrp_tx_callback, this, std::placeholders::_1));
return true;
}
bool freesrp_sink_c::stop()
{
_srp->send_cmd({FreeSRP::SET_DATAPATH_EN, 0});
_srp->stop_tx();
return true;
}
void freesrp_sink_c::freesrp_tx_callback(std::vector<FreeSRP::sample>& samples)
{
std::unique_lock<std::mutex> lk(_buf_mut);
for(FreeSRP::sample &s : samples)
{
if(!_buf_queue.try_dequeue(s))
{
s.i = 0;
s.q = 0;
}
else
{
_buf_available_space++;
}
}
_buf_cond.notify_one();
}
int freesrp_sink_c::work(int noutput_items, gr_vector_const_void_star& input_items, gr_vector_void_star& output_items)
{
const gr_complex *in = (const gr_complex *) input_items[0];
std::unique_lock<std::mutex> lk(_buf_mut);
// Wait until enough space is available
while(_buf_available_space < (unsigned int) noutput_items)
{
_buf_cond.wait(lk);
}
for(int i = 0; i < noutput_items; ++i)
{
FreeSRP::sample s;
s.i = (int16_t) (real(in[i]) * 2047.0f);
s.q = (int16_t) (imag(in[i]) * 2047.0f);
if(!_buf_queue.try_enqueue(s))
{
throw std::runtime_error("Failed to add sample to buffer. This should never happen. Available space reported to be " + std::to_string(_buf_available_space) + " samples, noutput_items=" + std::to_string(noutput_items) + ", i=" + std::to_string(i));
}
else
{
_buf_available_space--;
}
}
return noutput_items;
}
double freesrp_sink_c::set_sample_rate( double rate )
{
FreeSRP::command cmd = _srp->make_command(FreeSRP::SET_TX_SAMP_FREQ, rate);
FreeSRP::response r = _srp->send_cmd(cmd);
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not set TX sample rate, error: " << r.error << std::endl;
return 0;
}
else
{
return static_cast<double>(r.param);
}
}
double freesrp_sink_c::get_sample_rate( void )
{
FreeSRP::response r = _srp->send_cmd({FreeSRP::GET_TX_SAMP_FREQ, 0});
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not get TX sample rate, error: " << r.error << std::endl;
return 0;
}
else
{
return r.param;
}
}
double freesrp_sink_c::set_center_freq( double freq, size_t chan )
{
FreeSRP::command cmd = _srp->make_command(FreeSRP::SET_TX_LO_FREQ, freq);
FreeSRP::response r = _srp->send_cmd(cmd);
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not set TX LO frequency, error: " << r.error << std::endl;
return 0;
}
else
{
return static_cast<double>(r.param);
}
}
double freesrp_sink_c::get_center_freq( size_t chan )
{
FreeSRP::response r = _srp->send_cmd({FreeSRP::GET_TX_LO_FREQ, 0});
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not get TX LO frequency, error: " << r.error << std::endl;
return 0;
}
else
{
return static_cast<double>(r.param);
}
}
std::vector<std::string> freesrp_sink_c::get_gain_names( size_t chan )
{
std::vector<std::string> names;
names.push_back("TX_RF");
return names;
}
osmosdr::gain_range_t freesrp_sink_c::get_gain_range(size_t chan)
{
osmosdr::meta_range_t gain_ranges;
gain_ranges.push_back(osmosdr::range_t(0, 89.75, 0.25));
return gain_ranges;
}
osmosdr::gain_range_t freesrp_sink_c::get_gain_range(const std::string& name, size_t chan)
{
return get_gain_range(chan);
}
double freesrp_sink_c::set_gain(double gain, size_t chan)
{
gain = get_gain_range().clip(gain);
double atten = 89.75 - gain;
FreeSRP::command cmd = _srp->make_command(FreeSRP::SET_TX_ATTENUATION, atten * 1000);
FreeSRP::response r = _srp->send_cmd(cmd);
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not set TX attenuation, error: " << r.error << std::endl;
return 0;
}
else
{
return 89.75 - (((double) r.param) / 1000.0);
}
}
double freesrp_sink_c::set_gain(double gain, const std::string& name, size_t chan)
{
return set_gain(gain, chan);
}
double freesrp_sink_c::get_gain(size_t chan)
{
FreeSRP::response r = _srp->send_cmd({FreeSRP::GET_TX_ATTENUATION, 0});
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not get TX RF attenuation, error: " << r.error << std::endl;
return 0;
}
else
{
return 89.75 - (((double) r.param) / 1000.0);
}
}
double freesrp_sink_c::get_gain(const std::string& name, size_t chan)
{
return get_gain(chan);
}
double freesrp_sink_c::set_bb_gain(double gain, size_t chan)
{
return set_gain(gain, chan);
}
std::vector<std::string> freesrp_sink_c::get_antennas(size_t chan)
{
std::vector<std::string> antennas;
antennas.push_back(get_antenna(chan));
return antennas;
}
std::string freesrp_sink_c::set_antenna(const std::string& antenna, size_t chan)
{
return get_antenna(chan);
}
std::string freesrp_sink_c::get_antenna(size_t chan)
{
return "TX";
}
double freesrp_sink_c::set_bandwidth(double bandwidth, size_t chan)
{
FreeSRP::command cmd = _srp->make_command(FreeSRP::SET_TX_RF_BANDWIDTH, bandwidth);
FreeSRP::response r = _srp->send_cmd(cmd);
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not set TX RF bandwidth, error: " << r.error << std::endl;
return 0;
}
else
{
return static_cast<double>(r.param);
}
}
double freesrp_sink_c::get_bandwidth(size_t chan)
{
FreeSRP::response r = _srp->send_cmd({FreeSRP::GET_TX_RF_BANDWIDTH, 0});
if(r.error != FreeSRP::CMD_OK)
{
std::cerr << "Could not get TX RF bandwidth, error: " << r.error << std::endl;
return 0;
}
else
{
return r.param;
}
}
|