File: time_dependent_delay_impl.cc

package info (click to toggle)
gr-satellites 5.8.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,836 kB
  • sloc: python: 29,546; cpp: 5,448; ansic: 1,247; sh: 118; makefile: 24
file content (196 lines) | stat: -rw-r--r-- 7,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/* -*- c++ -*- */
/*
 * Copyright 2025 Daniel Estevez <daniel@destevez.net>.
 *
 * This file is part of gr-satellites
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 */

#include "time_dependent_delay_impl.h"
#include <gnuradio/io_signature.h>
#include <spdlog/fmt/fmt.h>
#include <fstream>
#include <stdexcept>

namespace gr {
namespace satellites {

time_dependent_delay::sptr time_dependent_delay::make(const std::string& filename,
                                                      double samp_rate,
                                                      double t0,
                                                      const std::vector<float>& taps,
                                                      int num_filters)
{
    return gnuradio::make_block_sptr<time_dependent_delay_impl>(
        filename, samp_rate, t0, taps, num_filters);
}


time_dependent_delay_impl::time_dependent_delay_impl(const std::string& filename,
                                                     double samp_rate,
                                                     double t0,
                                                     const std::vector<float>& taps,
                                                     int num_filters)
    : gr::sync_block("time_dependent_delay",
                     gr::io_signature::make(1, 1, sizeof(gr_complex)),
                     gr::io_signature::make(1, 1, sizeof(gr_complex))),
      d_samp_rate(samp_rate),
      d_current_index(0),
      d_t0(t0),
      d_sample_t0(0),
      d_fir_delay((static_cast<double>(taps.size()) - 1.0) /
                  (2.0 * static_cast<double>(num_filters))),
      d_taps_per_filter((taps.size() + num_filters - 1) / num_filters),
      d_rx_time_key(pmt::mp("rx_time")),
      d_pck_n_key(pmt::mp("pck_n")),
      d_full_key(pmt::mp("full")),
      d_frac_key(pmt::mp("frac")),
      d_current_time(t0),
      d_current_delay(0.0)
{
    for (int nfilt = 0; nfilt < num_filters; ++nfilt) {
        std::vector<float> filt_taps(d_taps_per_filter);
        for (size_t j = 0; j * num_filters + nfilt < taps.size(); ++j) {
            filt_taps[j] = taps[j * num_filters + nfilt];
        }
        d_filters.emplace_back(filt_taps);
    }

    read_delay_file(filename);

    double max_delay = 0.0;
    for (double delay : d_delays_samples) {
        max_delay = std::max(max_delay, delay);
    }

    // part of history due to delays
    const int delay_hist = static_cast<int>(max_delay - d_fir_delay) + 1;
    // part of history due to FIR filter
    const int fir_hist = d_taps_per_filter - 1;
    set_history(delay_hist + fir_hist);

    set_tag_propagation_policy(TPP_DONT);
}

time_dependent_delay_impl::~time_dependent_delay_impl() {}

void time_dependent_delay_impl::read_delay_file(const std::string& filename)
{
    std::ifstream input_file(filename);
    if (!input_file.good()) {
        throw std::runtime_error(fmt::format("error opening delay file '{}'", filename));
    }

    while (!input_file.eof()) {
        if (!input_file.good()) {
            throw std::runtime_error("format error in delay file");
        }
        double time;
        double delay_seconds;
        input_file >> time >> delay_seconds;
        const double delay_samples = delay_seconds * d_samp_rate;
        if (delay_samples < d_fir_delay) {
            throw std::runtime_error(
                fmt::format("delay {} samples ({} seconds) is smaller than FIR group "
                            "delay {} samples and cannot be realized",
                            delay_samples,
                            delay_seconds,
                            d_fir_delay));
        }
        d_times.push_back(time);
        d_delays_samples.push_back(delay_samples);
    }
    if (d_delays_samples.size() >= 1) {
        d_current_delay = d_delays_samples[0];
    }
}

void time_dependent_delay_impl::set_time(double t)
{
    gr::thread::scoped_lock guard(d_setlock);
    d_sample_t0 = nitems_written(0);
    d_t0 = t;
    d_logger->info("set time {} at sample {}", d_t0, d_sample_t0);
    adjust_current_index();
}

int time_dependent_delay_impl::work(int noutput_items,
                                    gr_vector_const_void_star& input_items,
                                    gr_vector_void_star& output_items)
{
    gr::thread::scoped_lock guard(d_setlock);
    auto in = static_cast<const gr_complex*>(input_items[0]);
    auto out = static_cast<gr_complex*>(output_items[0]);

    update_time_from_tags(noutput_items);

    const auto _history = history();
    const auto _nitems_written = nitems_written(0);
    double time = 0.0;
    double delay = 0.0;
    for (int j = 0; j < noutput_items; ++j) {
        time = compute_time(_nitems_written + static_cast<uint64_t>(j));
        delay = compute_delay(time);
        const double delay_before_fir = delay - d_fir_delay;
        int delay_int = static_cast<int>(delay_before_fir);
        double advance_frac = 1.0 - (delay_before_fir - delay_int);
        if (advance_frac == 1.0) {
            advance_frac = 0.0;
        } else {
            ++delay_int;
        }
        const int sample_idx0 = j + _history - 1 - delay_int - (d_taps_per_filter - 1);
        const double filter_idx_double =
            advance_frac * static_cast<double>(d_filters.size());
        const int filter_idx0 = static_cast<int>(filter_idx_double);
        int sample_idx1 = sample_idx0;
        int filter_idx1 = filter_idx0 + 1;
        if (filter_idx1 == static_cast<int>(d_filters.size())) {
            ++sample_idx1;
            filter_idx1 = 0;
        }
        const gr_complex z0 = d_filters[filter_idx0].filter(&in[sample_idx0]);
        const gr_complex z1 = d_filters[filter_idx1].filter(&in[sample_idx1]);
        const float filter_idx_frac =
            filter_idx_double - static_cast<double>(filter_idx0);
        out[j] = (1.0f - filter_idx_frac) * z0 + filter_idx_frac * z1;
    }
    d_current_time = time;
    d_current_delay = delay;

    // Propagate tags manually. Place tags which are in the future in
    // d_future_tags to avoid adding tags for items that are not produced yet.
    const uint64_t add_limit = _nitems_written + noutput_items;
    std::vector<gr::tag_t> tags;
    get_tags_in_window(tags, 0, 0, noutput_items);
    for (auto tag : tags) {
        const double tag_delay = compute_tag_delay(compute_time(tag.offset));
        const uint64_t tag_delay_round = static_cast<uint64_t>(std::round(tag_delay));
        // Note: this is an approximation. It assumes that the delay does not
        // change significantly between now and now + tag_delay, which is when
        // the tag will be placed.
        tag.offset += tag_delay_round;
        if (tag.offset < add_limit) {
            add_item_tag(0, tag);
        } else {
            d_future_tags.push_back(std::move(tag));
        }
    }

    // Output tags from previous work() which are not in the future anymore.
    auto tag = d_future_tags.cbegin();
    for (; tag < d_future_tags.cend(); ++tag) {
        if (tag->offset < add_limit) {
            add_item_tag(0, *tag);
        } else {
            break;
        }
    }
    d_future_tags.erase(d_future_tags.begin(), tag);

    return noutput_items;
}

} /* namespace satellites */
} /* namespace gr */