| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 
 | /* $XConsortium: spaces.c,v 1.4 91/10/10 11:19:16 rws Exp $ */
/* Copyright International Business Machines, Corp. 1991
 * All Rights Reserved
 * Copyright Lexmark International, Inc. 1991
 * All Rights Reserved
 *
 * License to use, copy, modify, and distribute this software and its
 * documentation for any purpose and without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and that
 * both that copyright notice and this permission notice appear in
 * supporting documentation, and that the name of IBM or Lexmark not be
 * used in advertising or publicity pertaining to distribution of the
 * software without specific, written prior permission.
 *
 * IBM AND LEXMARK PROVIDE THIS SOFTWARE "AS IS", WITHOUT ANY WARRANTIES OF
 * ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY
 * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
 * AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.  THE ENTIRE RISK AS TO THE
 * QUALITY AND PERFORMANCE OF THE SOFTWARE, INCLUDING ANY DUTY TO SUPPORT
 * OR MAINTAIN, BELONGS TO THE LICENSEE.  SHOULD ANY PORTION OF THE
 * SOFTWARE PROVE DEFECTIVE, THE LICENSEE (NOT IBM OR LEXMARK) ASSUMES THE
 * ENTIRE COST OF ALL SERVICING, REPAIR AND CORRECTION.  IN NO EVENT SHALL
 * IBM OR LEXMARK BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
 * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 * THIS SOFTWARE.
 */
 /* SPACES   CWEB         V0021 ********                             */
/*
:h1 id=spaces.SPACES Module - Handles Coordinate Spaces
 
This module is responsible for handling the TYPE1IMAGER "XYspace" object.
 
&author. Jeffrey B. Lotspiech (lotspiech@almaden.ibm.com)
 
 
:h3.Include Files
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "types.h"
#include "objects.h"
#include "spaces.h"
#include "paths.h"
#include "pictures.h"
#include "fonts.h"
#include "arith.h"
#include "trig.h"
static int FindFfcn();
static int FindIfcn();
/*
:h3.Entry Points Provided to the TYPE1IMAGER User
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h3.Entry Points Provided to Other Modules
*/
 
/*
In addition, other modules call the SPACES module through function
vectors in the "XYspace" structure.  The entry points accessed that
way are "FConvert()", "IConvert()", and "ForceFloat()".
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Macros and Typedefs Provided to Other Modules
 
:h4.Duplicating and Killing Spaces
 
Destroying XYspaces is so simple we can do it with a
macro:
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
/*
On the other hand, duplicating XYspaces is slightly more difficult
because of the need to keep a unique ID in the space, see
:hdref refid=dupspace..
 
:h4.Fixed Point Pel Representation
 
We represent pel positions with fixed point numbers.  This does NOT
mean integer, but truly means fixed point, with a certain number
of binary digits (FRACTBITS) representing the fractional part of the
pel.
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h2.Data Structures for Coordinate Spaces and Points
*/
/*
:h3 id=matrix.Matrices
 
TYPE1IMAGER uses 2x2 transformation matrices.  We'll use C notation for
such a matrix (M[2][2]), the first index being rows, the second columns.
*/
 
/*
:h3.The "doublematrix" Structure
 
We frequently find it desirable to store both a matrix and its
inverse.  We store these in a "doublematrix" structure.
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h3.The "XYspace" Structure
 
The XYspace structure represents the XYspace object.
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
#define    RESERVED  10      /* 'n' IDs are reserved for invalid & immortal spaces */
/*
*/
#define    NEXTID    ((SpaceID < RESERVED) ? (SpaceID = RESERVED) : ++SpaceID)
 
static unsigned int SpaceID = 1;
 
struct XYspace *CopySpace(S)
       register struct XYspace *S;
{
       S = (struct XYspace *)Allocate(sizeof(struct XYspace), S, 0);
       S->ID = NEXTID;
       return(S);
}
/*
:h3.The "fractpoint" Structure
 
A fractional point is just a "fractpel" x and y:
*/
 
/*SHARED LINE(S) ORIGINATED HERE*/
 
/*
:h3.Lazy Evaluation of Matrix Inverses
 
Calculating the inverse of a matrix is somewhat involved, and we usually
do not need them.  So, we flag whether or not the space has the inverse
already calculated:
*/
 
#define    HASINVERSE(flag)   ((flag)&0x80)
 
/*
The following macro forces a space to have an inverse:
*/
 
#define    CoerceInverse(S)   if (!HASINVERSE((S)->flag)) { \
    MatrixInvert((S)->tofract.normal, (S)->tofract.inverse); (S)->flag |= HASINVERSE(ON); }
/*
:h3.IDENTITY Space
 
IDENTITY space is (logically) the space corresponding to the identity
transformation matrix.  However, since all our transformation matrices
have a common FRACTFLOAT scale factor to convert to 'fractpel's, that
is actually what we store in 'tofract' matrix of IDENTITY:
*/
 
static struct XYspace identity = { SPACETYPE, ISPERMANENT(ON) + ISIMMORTAL(ON)
                        + HASINVERSE(ON), 2, /* added 3-26-91 PNM */
                        NULL, NULL,
                        NULL, NULL, NULL, NULL,
			INVALIDID + 1, 0,
		        {{{FRACTFLOAT, 0.0}, {0.0, FRACTFLOAT}},
                        {{1.0/FRACTFLOAT, 0.0}, {0.0, 1.0/FRACTFLOAT}}},
                        {{0, 0}, {0, 0}} };
struct XYspace *IDENTITY = &identity;
 
/*
*/
#define  MAXCONTEXTS   16
 
static struct doublematrix contexts[MAXCONTEXTS];
 
#ifdef notdef
static int nextcontext = 1;
 
/*SHARED LINE(S) ORIGINATED HERE*/
#if __STDC__
#define   pointer          void *
#else
#define   pointer          char *
#endif
 
/*
:h3.FindDeviceContext() - Find the Context Given a Device
 
This routine, given a device, returns the index of the device's
transformation matrix in the context array.  If it cannot find it,
it will allocate a new array entry and fill it out.
*/
 
static int FindDeviceContext(device)
       pointer device;       /* device token                                 */
{
       DOUBLE M[2][2];       /* temporary matrix                             */
       float Xres,Yres;      /* device  resolution                           */
       int orient = -1;      /* device orientation                           */
       int rc = -1;          /* return code for QueryDeviceState             */
 
       if (rc != 0)          /* we only bother with this check once          */
               abort("Context:  QueryDeviceState didn't work", 44);
 
       M[0][0] = M[1][0] = M[0][1] = M[1][1] = 0.0;
 
       switch (orient) {
           case 0:
               M[0][0] = Xres;  M[1][1] = -Yres;
               break;
           case 1:
               M[1][0] = Yres;  M[0][1] = Xres;
               break;
           case 2:
               M[0][0] = -Xres;  M[1][1] = Yres;
               break;
           case 3:
               M[1][0] = -Yres;  M[0][1] = -Xres;
               break;
           default:
               abort("QueryDeviceState returned invalid orientation", 45);
       }
       return(FindContext(M));
}
 
/*
:h3.FindContext() - Find the Context Given a Matrix
 
This routine, given a matrix, returns the index of that matrix matrix in
the context array.  If it cannot find it, it will allocate a new array
entry and fill it out.
*/
 
int FindContext(M)
       DOUBLE M[2][2];       /* array to search for                          */
{
       register int i;       /* loop variable for search                     */
       for (i=0; i < nextcontext; i++)
               if (M[0][0] == contexts[i].normal[0][0] && M[1][0] == contexts[i].normal[1][0]
                   && M[0][1] == contexts[i].normal[0][1] && M[1][1] == contexts[i].normal[1][1])
                       break;
 
       if (i >= nextcontext) {
               if (i >= MAXCONTEXTS)
                       abort("Context:  out of them", 46);
               LONGCOPY(contexts[i].normal, M, sizeof(contexts[i].normal));
               MatrixInvert(M, contexts[i].inverse);
               nextcontext++;
       }
 
       return(i);
}
 
/*
:h3.Context() - Create a Coordinate Space for a Device
 
This user operator is implemented by first finding the device context
array index, then transforming IDENTITY space to create an appropriate
cooridnate space.
*/
 
struct XYspace *Context(device, units)
       pointer device;       /* device token                                 */
       DOUBLE units;         /* multiples of one inch                        */
{
       DOUBLE M[2][2];       /* device transformation matrix                 */
       register int n;       /* will hold device context number              */
       register struct XYspace *S;  /* XYspace constructed                   */
 
       IfTrace2((MustTraceCalls),"Context(%x, %f)\n", device, &units);
 
       ARGCHECK((device == NULL), "Context of NULLDEVICE not allowed",
                    NULL, IDENTITY, (0), struct XYspace *);
       ARGCHECK((units == 0.0), "Context: bad units", NULL, IDENTITY, (0), struct XYspace *);
 
       n = FindDeviceContext(device);
 
       LONGCOPY(M, contexts[n].normal, sizeof(M));
 
       M[0][0] *= units;
       M[0][1] *= units;
       M[1][0] *= units;
       M[1][1] *= units;
 
       S = (struct XYspace *)Xform(IDENTITY, M);
 
       S->context = n;
       return(S);
}
#endif
 
/*
:h3.ConsiderContext() - Adjust a Matrix to Take Out Device Transform
 
Remember, we have :f/x times U times D/ and :f/M/ and and we want :f/x
times U times M times D/.  An easy way to do this is to calculate
:f/D sup <-1> times M times D/, because:
:formula.
x times U times D times D sup <-1> times M times D = x times U times M times D
:formula.
So this subroutine, given an :f/M/and an object, finds the :f/D/ for that
object and modifies :f/M/ so it is :f/D sup <-1> times M times D/.
*/
 
static void ConsiderContext(obj, M)
       register struct xobject *obj;  /* object to be transformed            */
       register DOUBLE M[2][2];    /* matrix (may be changed)                */
{
       register int context=0; /* index in contexts array                      */
 
       if (obj == NULL) return;
 
       if (ISPATHTYPE(obj->type)) {
               struct segment *path = (struct segment *) obj;
 
               context = path->context;
       }
       else if (obj->type == SPACETYPE) {
               struct XYspace *S = (struct XYspace *) obj;
 
               context = S->context;
       }
       else if (obj->type == PICTURETYPE) {
       }
       else
               context = NULLCONTEXT;
 
       if (context != NULLCONTEXT) {
               MatrixMultiply(contexts[context].inverse, M, M);
               MatrixMultiply(M, contexts[context].normal, M);
       }
}
 
/*
:h2.Conversion from User's X,Y to "fractpel" X,Y
 
When the user is building paths (lines, moves, curves, etc.) he passes
the control points (x,y) for the paths together with an XYspace.  We
must convert from the user's (x,y) to our internal representation
which is in pels (fractpels, actually).  This involves transforming
the user's (x,y) under the coordinate space transformation.  It is
important that we do this quickly.  So, we store pointers to different
conversion functions right in the XYspace structure.  This allows us
to have simpler special case functions for the more commonly
encountered types of transformations.
 
:h3.Convert(), IConvert(), and ForceFloat() - Called Through "XYspace" Structure
 
These are functions that fit in the "convert" and "iconvert" function
pointers in the XYspace structure.  They call the "xconvert", "yconvert",
"ixconvert", and "iyconvert" as appropriate to actually do the work.
These secondary routines come in many flavors to handle different
special cases as quickly as possible.
*/
 
int FXYConvert(pt, S, x, y)
       register struct fractpoint *pt;  /* point to set                      */
       register struct XYspace *S;  /* relevant coordinate space             */
       register DOUBLE x,y;  /* user's coordinates of point                  */
{
       pt->x = (*S->xconvert)(S->tofract.normal[0][0], S->tofract.normal[1][0], x, y);
       pt->y = (*S->yconvert)(S->tofract.normal[0][1], S->tofract.normal[1][1], x, y);
       return(0);
       
}
 
int IXYConvert(pt, S, x, y)
       register struct fractpoint *pt;  /* point to set                      */
       register struct XYspace *S;  /* relevant coordinate space             */
       register LONG x,y;    /* user's coordinates of point                  */
{
       pt->x = (*S->ixconvert)(S->itofract[0][0], S->itofract[1][0], x, y);
       pt->y = (*S->iyconvert)(S->itofract[0][1], S->itofract[1][1], x, y);
       return(0);
       
}
 
/*
ForceFloat is a substitute for IConvert(), when we just do not have
enough significant digits in the coefficients to get high enough
precision in the answer with fixed point arithmetic.  So, we force the
integers to floats, and do the arithmetic all with floats:
*/
 
int ForceFloat(pt, S, x, y)
       register struct fractpoint *pt;  /* point to set                      */
       register struct XYspace *S;  /* relevant coordinate space             */
       register LONG x,y;    /* user's coordinates of point                  */
{
       (*S->convert)(pt, S, (DOUBLE) x, (DOUBLE) y);
       return(0);
       
}
 
/*
:h3.FXYboth(), FXonly(), FYonly() - Floating Point Conversion
 
These are the routines we use when the user has given us floating
point numbers for x and y. FXYboth() is the general purpose routine;
FXonly() and FYonly() are special cases when one of the coefficients
is 0.0.
*/
 
fractpel FXYboth(cx, cy, x, y)
       register DOUBLE cx,cy;  /* x and y coefficients                       */
       register DOUBLE x,y;  /* user x,y                                     */
{
       register DOUBLE r;    /* temporary float                              */
 
       r = x * cx + y * cy;
       return((fractpel) r);
}
 
/*ARGSUSED*/
fractpel FXonly(cx, cy, x, y)
       register DOUBLE cx,cy;  /* x and y coefficients                       */
       register DOUBLE x,y;  /* user x,y                                     */
{
       register DOUBLE r;    /* temporary float                              */
 
       r = x * cx;
       return((fractpel) r);
}
 
/*ARGSUSED*/
fractpel FYonly(cx, cy, x, y)
       register DOUBLE cx,cy;  /* x and y coefficients                       */
       register DOUBLE x,y;  /* user x,y                                     */
{
       register DOUBLE r;    /* temporary float                              */
 
       r = y * cy;
       return((fractpel) r);
}
 
/*
:h3.IXYboth(), IXonly(), IYonly() - Simple Integer Conversion
 
These are the routines we use when the user has given us integers for
x and y, and the coefficients have enough significant digits to
provide precise answers with only "long" (32 bit?) multiplication.
IXYboth() is the general purpose routine; IXonly() and IYonly() are
special cases when one of the coefficients is 0.
*/
 
fractpel IXYboth(cx, cy, x, y)
       register fractpel cx,cy;  /* x and y coefficients                     */
       register LONG x,y;    /* user x,y                                     */
{
       return(x * cx + y * cy);
}
 
/*ARGSUSED*/
fractpel IXonly(cx, cy, x, y)
       register fractpel cx,cy;  /* x and y coefficients                     */
       register LONG x,y;    /* user x,y                                     */
{
       return(x * cx);
}
 
/*ARGSUSED*/
fractpel IYonly(cx, cy, x, y)
       register fractpel cx,cy;  /* x and y coefficients                     */
       register LONG x,y;    /* user x,y                                     */
{
       return(y * cy);
}
 
 
/*
:h3.FPXYboth(), FPXonly(), FPYonly() - More Involved Integer Conversion
 
These are the routines we use when the user has given us integers for
x and y, but the coefficients do not have enough significant digits to
provide precise answers with only "long" (32 bit?)  multiplication.
We have increased the number of significant bits in the coefficients
by FRACTBITS; therefore we must use "double long" (64 bit?)
multiplication by calling FPmult().  FPXYboth() is the general purpose
routine; FPXonly() and FPYonly() are special cases when one of the
coefficients is 0.
 
Note that it is perfectly possible for us to calculate X with the
"FP" method and Y with the "I" method, or vice versa.  It all depends
on how the functions in the XYspace structure are filled out.
*/
 
fractpel FPXYboth(cx, cy, x, y)
       register fractpel cx,cy;  /* x and y coefficients                     */
       register LONG x,y;    /* user x,y                                     */
{
       return( FPmult(x, cx) + FPmult(y, cy) );
}
 
/*ARGSUSED*/
fractpel FPXonly(cx, cy, x, y)
       register fractpel cx,cy;  /* x and y coefficients                     */
       register LONG x,y;    /* user x,y                                     */
{
       return( FPmult(x, cx) );
}
 
/*ARGSUSED*/
fractpel FPYonly(cx, cy, x, y)
       register fractpel cx,cy;  /* x and y coefficients                     */
       register LONG x,y;    /* user x,y                                     */
{
       return( FPmult(y, cy) );
}
 
 
 
/*
:h3.FillOutFcns() - Determine the Appropriate Functions to Use for Conversion
 
This function fills out the "convert" and "iconvert" function pointers
in an XYspace structure, and also fills the "helper"
functions that actually do the work.
*/
 
static void FillOutFcns(S)
       register struct XYspace *S;  /* functions will be set in this structure */
{
       S->convert = FXYConvert;
       S->iconvert = IXYConvert;
 
       FindFfcn(S->tofract.normal[0][0], S->tofract.normal[1][0], &S->xconvert);
       FindFfcn(S->tofract.normal[0][1], S->tofract.normal[1][1], &S->yconvert);
       FindIfcn(S->tofract.normal[0][0], S->tofract.normal[1][0],
                &S->itofract[0][0], &S->itofract[1][0], &S->ixconvert);
       FindIfcn(S->tofract.normal[0][1], S->tofract.normal[1][1],
                &S->itofract[0][1], &S->itofract[1][1], &S->iyconvert);
 
       if (S->ixconvert == NULL || S->iyconvert == NULL)
                S->iconvert = ForceFloat;
}
 
/*
:h4.FindFfcn() - Subroutine of FillOutFcns() to Fill Out Floating Functions
 
This function tests for the special case of one of the coefficients
being zero:
*/
 
static int FindFfcn(cx, cy, fcnP)
       register DOUBLE cx,cy;  /* x and y coefficients                       */
       register fractpel (**fcnP)();  /* pointer to function to set          */
{
       if (cx == 0.0)
               *fcnP = FYonly;
       else if (cy == 0.0)
               *fcnP = FXonly;
       else
               *fcnP = FXYboth;
       return(0);
       
}
 
/*
:h4.FindIfcn() - Subroutine of FillOutFcns() to Fill Out Integer Functions
 
There are two types of integer functions, the 'I' type and the 'FP' type.
We use the I type functions when we are satisfied with simple integer
arithmetic.  We used the FP functions when we feel we need higher
precision (but still fixed point) arithmetic.  If all else fails,
we store a NULL indicating that this we should do the conversion in
floating point.
*/
 
static int FindIfcn(cx, cy, icxP, icyP, fcnP)
       register DOUBLE cx,cy;  /* x and y coefficients                       */
       register fractpel *icxP,*icyP;  /* fixed point coefficients to set    */
       register fractpel (**fcnP)();  /* pointer to function to set          */
{
       register fractpel imax;  /* maximum of cx and cy                      */
 
       *icxP = cx;
       *icyP = cy;
 
       if (cx != (float) (*icxP) || cy != (float) (*icyP)) {
/*
At this point we know our integer approximations of the coefficients
are not exact.  However, we will still use them if the maximum
coefficient will not fit in a 'fractpel'.   Of course, we have little
choice at that point, but we haven't lost that much precision by
staying with integer arithmetic.  We have enough significant digits
so that
any error we introduce is less than one part in 2:sup/16/.
*/
 
               imax = TYPE1_MAX(TYPE1_ABS(*icxP), TYPE1_ABS(*icyP));
               if (imax < (fractpel) (1<<(FRACTBITS-1)) ) {
/*
At this point we know our integer approximations just do not have
enough significant digits for accuracy.  We will add FRACTBITS
significant digits to the coefficients (by multiplying them by
1<<FRACTBITS) and go to the "FP" form of the functions.  First, we
check to see if we have ANY significant digits at all (that is, if
imax == 0).  If we don't, we suspect that adding FRACTBITS digits
won't help, so we punt the whole thing.
*/
                       if (imax == 0) {
                               *fcnP = NULL;
                               return(0);
                       }
                       cx *= FRACTFLOAT;
                       cy *= FRACTFLOAT;
                       *icxP = cx;
                       *icyP = cy;
                       *fcnP = FPXYboth;
               }
               else
                       *fcnP = IXYboth;
       }
       else
               *fcnP = IXYboth;
/*
Now we check for special cases where one coefficient is zero (after
integer conversion):
*/
       if (*icxP == 0)
               *fcnP = (*fcnP == FPXYboth) ? FPYonly : IYonly;
       else if (*icyP == 0)
               *fcnP = (*fcnP == FPXYboth) ? FPXonly : IXonly;
       return(0);
       
}
/*
:h3.UnConvert() - Find User Coordinates From FractPoints
 
The interesting thing with this routine is that we avoid calculating
the matrix inverse of the device transformation until we really need
it, which is to say, until this routine is called for the first time
with a given coordinate space.
 
We also only calculate it only once.  If the inverted matrix is valid,
we don't calculate it; if not, we do.  We never expect matrices with
zero determinants, so by convention, we mark the matrix is invalid by
marking both X terms zero.
*/
 
void UnConvert(S, pt, xp, yp)
       register struct XYspace *S;  /* relevant coordinate space             */
       register struct fractpoint *pt;  /* device coordinates                */
       DOUBLE *xp,*yp;       /* where to store resulting x,y                 */
{
       DOUBLE x,y;
 
       CoerceInverse(S);
       x = pt->x;
       y = pt->y;
       *xp = S->tofract.inverse[0][0] * x + S->tofract.inverse[1][0] * y;
       *yp = S->tofract.inverse[0][1] * x + S->tofract.inverse[1][1] * y;
}
 
/*
:h2.Transformations
*/
/*
:h3 id=xform.Xform() - Transform Object in X and Y
 
TYPE1IMAGER wants transformations of objects like paths to be identical
to transformations of spaces.  For example, if you scale a line(1,1)
by 10 it should yield the same result as generating the line(1,1) in
a coordinate space that has been scaled by 10.
 
We handle fonts by storing the accumulated transform, for example, SR
(accumulating on the right).  Then when we map the font through space TD,
for example, we multiply the accumulated font transform on the left by
the space transform on the right, yielding SRTD in this case.  We will
get the same result if we did S, then R, then T on the space and mapping
an unmodified font through that space.
*/
 
struct xobject *t1_Xform(obj, M)
       register struct xobject *obj;  /* object to transform                 */
       register DOUBLE M[2][2];    /* transformation matrix                  */
{
       if (obj == NULL)
               return(NULL);
 
       if (obj->type == FONTTYPE) {
               register struct font *F = (struct font *) obj;
 
               F = UniqueFont(F);
               return((struct xobject*)F);
       }
       if (obj->type == PICTURETYPE) {
/*
In the case of a picture, we choose both to update the picture's
transformation matrix and keep the handles up to date.
*/
               register struct picture *P = (struct picture *) obj;
               register struct segment *handles;  /* temporary path to transform handles */
 
               P = UniquePicture(P);
               handles = PathSegment(LINETYPE, P->origin.x, P->origin.y);
               handles = Join(handles,
                              PathSegment(LINETYPE, P->ending.x, P->ending.y) );
               handles = (struct segment *)Xform((struct xobject *) handles, M);
               P->origin = handles->dest;
               P->ending = handles->link->dest;
               KillPath(handles);
               return((struct xobject *)P);
       }
 
       if (ISPATHTYPE(obj->type)) {
               struct XYspace pseudo;  /* local temporary space              */
               PseudoSpace(&pseudo, M);
               return((struct xobject *) PathTransform(obj, &pseudo));
       }
 
 
       if (obj->type == SPACETYPE) {
               register struct XYspace *S = (struct XYspace *) obj;
 
/* replaced ISPERMANENT(S->flag) with S->references > 1 3-26-91 PNM */
               if (S->references > 1)
                       S = CopySpace(S);
               else
                       S->ID = NEXTID;
 
               MatrixMultiply(S->tofract.normal, M, S->tofract.normal);
               /*
               * mark inverted matrix invalid:
               */
               S->flag &= ~HASINVERSE(ON);
 
               FillOutFcns(S);
               return((struct xobject *) S);
       }
 
       return(ArgErr("Untransformable object", obj, obj));
}
 
/*
:h3.Transform() - Transform an Object
 
This is the external user's entry point.
*/
struct xobject *t1_Transform(obj, cxx, cyx, cxy, cyy)
       struct xobject *obj;
       DOUBLE cxx,cyx,cxy,cyy;  /* 2x2 transform matrix elements in row order */
{
       DOUBLE M[2][2];
 
       IfTrace1((MustTraceCalls),"Transform(%p,", obj);
       IfTrace4((MustTraceCalls)," %f %f %f %f)\n", cxx, cyx, cxy, cyy);
 
       M[0][0] = cxx;
       M[0][1] = cyx;
       M[1][0] = cxy;
       M[1][1] = cyy;
       ConsiderContext(obj, M);
       return(Xform(obj, M));
}
/*
:h3.Scale() - Special Case of Transform()
 
This is a user operator.
*/
 
struct xobject *t1_Scale(obj, sx, sy)
       struct xobject *obj;  /* object to scale                              */
       DOUBLE sx,sy;         /* scale factors in x and y                     */
{
       DOUBLE M[2][2];
       IfTrace3((MustTraceCalls),"Scale(%p, %f, %f)\n", obj, sx, sy);
       M[0][0] = sx;
       M[1][1] = sy;
       M[1][0] = M[0][1] = 0.0;
       ConsiderContext(obj, M);
       return(Xform(obj, M));
}
 
/*
:h3 id=rotate.Rotate() - Special Case of Transform()
 
We special-case different settings of 'degrees' for performance
and accuracy within the DegreeSin() and DegreeCos() routines themselves.
*/
 
#ifdef notdef
struct xobject *xiRotate(obj, degrees)
       struct xobject *obj;  /* object to be transformed                     */
       DOUBLE degrees;       /* degrees of COUNTER-clockwise rotation        */
{
       DOUBLE M[2][2];
 
 
       IfTrace2((MustTraceCalls),"Rotate(%z, %f)\n", obj, °rees);
 
       M[0][0] = M[1][1] = DegreeCos(degrees);
       M[1][0] = - (M[0][1] = DegreeSin(degrees));
       ConsiderContext(obj, M);
       return(Xform(obj, M));
}
#endif
 
/*
:h3.PseudoSpace() - Build a Coordinate Space from a Matrix
 
Since we have built all this optimized code that, given an (x,y) and
a coordinate space, yield transformed (x,y), it seems a shame not to
use the same logic when we need to multiply an (x,y) by an arbitrary
matrix that is not (initially) part of a coordinate space.  This
subroutine takes the arbitrary matrix and builds a coordinate
space, with all its nifty function pointers.
*/
 
void PseudoSpace(S, M)
       struct XYspace *S;    /* coordinate space structure to fill out       */
       DOUBLE M[2][2];       /* matrix that will become 'tofract.normal'     */
{
       S->type = SPACETYPE;
       S->flag = ISPERMANENT(ON) + ISIMMORTAL(ON);
       S->references = 2;   /* 3-26-91 added PNM  */
       S->tofract.normal[0][0] = M[0][0];
       S->tofract.normal[1][0] = M[1][0];
       S->tofract.normal[0][1] = M[0][1];
       S->tofract.normal[1][1] = M[1][1];
 
       FillOutFcns(S);
}
 
/*
:h2 id=matrixa.Matrix Arithmetic
 
Following the convention in Newman and Sproull, :hp1/Interactive
Computer Graphics/,
matrices are organized:
:xmp.
       | cxx   cyx |
       | cxy   cyy |
:exmp.
A point is horizontal, for example:
:xmp.
       [ x y ]
:exmp.
This means that:
:formula/x prime = cxx times x + cxy times y/
:formula/y prime = cyx times x + cyy times y/
I've seen the other convention, where transform matrices are
transposed, equally often in the literature.
*/
 
/*
:h3.MatrixMultiply() - Implements Multiplication of Two Matrices
 
Implements matrix multiplication, A * B = C.
 
To remind myself, matrix multiplication goes rows of A times columns
of B.
The output matrix may be the same as one of the input matrices.
*/
void MatrixMultiply(A, B, C)
       register DOUBLE A[2][2],B[2][2];  /* input matrices                   */
       register DOUBLE C[2][2];    /* output matrix                          */
{
       register DOUBLE txx,txy,tyx,tyy;
 
       txx = A[0][0] * B[0][0] + A[0][1] * B[1][0];
       txy = A[1][0] * B[0][0] + A[1][1] * B[1][0];
       tyx = A[0][0] * B[0][1] + A[0][1] * B[1][1];
       tyy = A[1][0] * B[0][1] + A[1][1] * B[1][1];
 
       C[0][0] = txx;
       C[1][0] = txy;
       C[0][1] = tyx;
       C[1][1] = tyy;
}
/*
:h3.MatrixInvert() - Invert a Matrix
 
My reference for matrix inversion was :hp1/Elementary Linear Algebra/
by Paul C. Shields, Worth Publishers, Inc., 1968.
*/
void MatrixInvert(M, Mprime)
       DOUBLE M[2][2];       /* input matrix                                 */
       DOUBLE Mprime[2][2];    /* output inverted matrix                     */
{
       register DOUBLE D;    /* determinant of matrix M                      */
       register DOUBLE txx,txy,tyx,tyy;
 
       txx = M[0][0];
       txy = M[1][0];
       tyx = M[0][1];
       tyy = M[1][1];
 
       D = M[1][1] * M[0][0] - M[1][0] * M[0][1];
       if (D == 0.0)
               abort("MatrixInvert:  can't", 47);
 
       Mprime[0][0] = tyy / D;
       Mprime[1][0] = -txy / D;
       Mprime[0][1] = -tyx / D;
       Mprime[1][1] = txx / D;
}
/*
:h2.Initialization, Queries, and Debug
*/
/*
:h3.InitSpaces() - Initialize Constant Spaces
 
For compatibility, we initialize a coordinate space called USER which
maps 72nds of an inch to pels on the default device.
*/
 
struct XYspace *USER = &identity;
 
void InitSpaces()
{
  /* extern char *DEFAULTDEVICE; */
 
       IDENTITY->type = SPACETYPE;
       FillOutFcns(IDENTITY);
 
       contexts[NULLCONTEXT].normal[1][0]
             = contexts[NULLCONTEXT].normal[0][1]
             = contexts[NULLCONTEXT].inverse[1][0]
             = contexts[NULLCONTEXT].inverse[0][1] = 0.0;
       contexts[NULLCONTEXT].normal[0][0]
             = contexts[NULLCONTEXT].normal[1][1]
             = contexts[NULLCONTEXT].inverse[0][0]
             = contexts[NULLCONTEXT].inverse[1][1] = 1.0;
 
       USER->flag |= ISIMMORTAL(ON);
       CoerceInverse(USER);
}
/*
:h3.QuerySpace() - Returns the Transformation Matrix of a Space
 
Since the tofract matrix of an XYspace includes the scale factor
necessary to produce fractpel results (i.e., FRACTFLOAT), this
must be taken out before we return the matrix to the user.  Fortunately,
this is simple:  just multiply by the inverse of IDENTITY!
*/
 
void QuerySpace(S, cxxP, cyxP, cxyP, cyyP)
       register struct XYspace *S;  /* space asked about                     */
       register DOUBLE *cxxP,*cyxP,*cxyP,*cyyP;  /* where to put answer      */
{
       DOUBLE M[2][2];       /* temp matrix to build user's answer           */
 
       if (S->type != SPACETYPE) {
               ArgErr("QuerySpace: not a space", S, NULL);
               return;
       }
       MatrixMultiply(S->tofract.normal, IDENTITY->tofract.inverse, M);
       *cxxP = M[0][0];
       *cxyP = M[1][0];
       *cyxP = M[0][1];
       *cyyP = M[1][1];
}
 
/*
:h3.FormatFP() - Format a Fixed Point Pel
 
We format the pel as "dddd.XXXX", where XX's are hexidecimal digits,
and the dd's are decimal digits.  This might be a little confusing
mixing hexidecimal and decimal like that, but it is convenient
to use for debug.
 
We make sure we have N (FRACTBITS/4) digits past the decimal point.
*/
#define  FRACTMASK   ((1<<FRACTBITS)-1)  /* mask for fractional part         */
 
void FormatFP(string, fpel)
       register char *string;  /* output string                              */
       register fractpel fpel; /* fractional pel input                       */
{
       char temp[8];
       register char *s;
       register char *sign;
 
       if (fpel < 0) {
               sign = "-";
               fpel = -fpel;
       }
       else
               sign = "";
 
       sprintf(temp, "000%x", fpel & FRACTMASK);
       s = temp + strlen(temp) - (FRACTBITS/4);
 
       sprintf(string, "%s%d.%sx", sign, fpel >> FRACTBITS, s);
}
 
/*
:h3.DumpSpace() - Display a Coordinate Space
*/
/*ARGSUSED*/
void DumpSpace(S)
       register struct XYspace *S;
{
       IfTrace4(TRUE,"--Coordinate space at %p,ID=%d,convert=%p,iconvert=%p\n",
                   S, S->ID, S->convert, S->iconvert);
       IfTrace2(TRUE,"             |  %12.3f  %12.3f  |",
                   S->tofract.normal[0][0], S->tofract.normal[0][1]);
       IfTrace2(TRUE,"   [  %d  %d ]\n", S->itofract[0][0], S->itofract[0][1]);
       IfTrace2(TRUE,"             |  %12.3f  %12.3f  |",
                   S->tofract.normal[1][0], S->tofract.normal[1][1]);
       IfTrace2(TRUE,"   [  %d  %d ]\n", S->itofract[1][0], S->itofract[1][1]);
}
 |