File: cbrt.c

package info (click to toggle)
grace 1%3A5.1.25-18
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 14,828 kB
  • sloc: ansic: 102,045; sh: 5,492; makefile: 572; fortran: 56; perl: 56
file content (139 lines) | stat: -rw-r--r-- 2,387 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*							cbrt.c
 *
 *	Cube root
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, cbrt();
 *
 * y = cbrt( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the cube root of the argument, which may be negative.
 *
 * Range reduction involves determining the power of 2 of
 * the argument.  A polynomial of degree 2 applied to the
 * mantissa, and multiplication by the cube root of 1, 2, or 4
 * approximates the root to within about 0.1%.  Then Newton's
 * iteration is used three times to converge to an accurate
 * result.
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC        -10,10     200000      1.8e-17     6.2e-18
 *    IEEE       0,1e308     30000      1.5e-16     5.0e-17
 *
 */
/*							cbrt.c  */

/*
Cephes Math Library Release 2.2:  January, 1991
Copyright 1984, 1991 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/


#include "mconf.h"
#include "cephes.h"

#ifndef HAVE_CBRT

static double CBRT2  = 1.2599210498948731647672;
static double CBRT4  = 1.5874010519681994747517;
static double CBRT2I = 0.79370052598409973737585;
static double CBRT4I = 0.62996052494743658238361;

double cbrt(x)
double x;
{
int e, rem, sign;
double z;

#ifdef NANS
if( isnan(x) )
  return x;
#endif
#ifdef INFINITIES
if( !finite(x) )
  return x;
#endif
if( x == 0 )
	return( x );
if( x > 0 )
	sign = 1;
else
	{
	sign = -1;
	x = -x;
	}

z = x;
/* extract power of 2, leaving
 * mantissa between 0.5 and 1
 */
x = frexp( x, &e );

/* Approximate cube root of number between .5 and 1,
 * peak relative error = 9.2e-6
 */
x = (((-1.3466110473359520655053e-1  * x
      + 5.4664601366395524503440e-1) * x
      - 9.5438224771509446525043e-1) * x
      + 1.1399983354717293273738e0 ) * x
      + 4.0238979564544752126924e-1;

/* exponent divided by 3 */
if( e >= 0 )
	{
	rem = e;
	e /= 3;
	rem -= 3*e;
	if( rem == 1 )
		x *= CBRT2;
	else if( rem == 2 )
		x *= CBRT4;
	}


/* argument less than 1 */

else
	{
	e = -e;
	rem = e;
	e /= 3;
	rem -= 3*e;
	if( rem == 1 )
		x *= CBRT2I;
	else if( rem == 2 )
		x *= CBRT4I;
	e = -e;
	}

/* multiply by power of 2 */
x = ldexp( x, e );

/* Newton iteration */
x -= ( x - (z/(x*x)) )*0.33333333333333333333;
#ifdef DEC
x -= ( x - (z/(x*x)) )/3.0;
#else
x -= ( x - (z/(x*x)) )*0.33333333333333333333;
#endif

if( sign < 0 )
	x = -x;
return(x);
}

#endif