1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/* ellpe.c
*
* Complete elliptic integral of the second kind
*
*
*
* SYNOPSIS:
*
* double m1, y, ellpe();
*
* y = ellpe( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
* pi/2
* -
* | | 2
* E(m) = | sqrt( 1 - m sin t ) dt
* | |
* -
* 0
*
* Where m = 1 - m1, using the approximation
*
* P(x) - x log x Q(x).
*
* Though there are no singularities, the argument m1 is used
* rather than m for compatibility with ellpk().
*
* E(1) = 1; E(0) = pi/2.
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0, 1 13000 3.1e-17 9.4e-18
* IEEE 0, 1 10000 2.1e-16 7.3e-17
*
*
* ERROR MESSAGES:
*
* message condition value returned
* ellpe domain x<0, x>1 0.0
*
*/
/* ellpe.c */
/* Elliptic integral of second kind */
/*
Cephes Math Library, Release 2.1: February, 1989
Copyright 1984, 1987, 1989 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
#include "cephes.h"
#ifdef UNK
static double P[] = {
1.53552577301013293365E-4,
2.50888492163602060990E-3,
8.68786816565889628429E-3,
1.07350949056076193403E-2,
7.77395492516787092951E-3,
7.58395289413514708519E-3,
1.15688436810574127319E-2,
2.18317996015557253103E-2,
5.68051945617860553470E-2,
4.43147180560990850618E-1,
1.00000000000000000299E0
};
static double Q[] = {
3.27954898576485872656E-5,
1.00962792679356715133E-3,
6.50609489976927491433E-3,
1.68862163993311317300E-2,
2.61769742454493659583E-2,
3.34833904888224918614E-2,
4.27180926518931511717E-2,
5.85936634471101055642E-2,
9.37499997197644278445E-2,
2.49999999999888314361E-1
};
#endif
#ifdef DEC
static unsigned short P[] = {
0035041,0001364,0141572,0117555,
0036044,0066032,0130027,0033404,
0036416,0053617,0064456,0102632,
0036457,0161100,0061177,0122612,
0036376,0136251,0012403,0124162,
0036370,0101316,0151715,0131613,
0036475,0105477,0050317,0133272,
0036662,0154232,0024645,0171552,
0037150,0126220,0047054,0030064,
0037742,0162057,0167645,0165612,
0040200,0000000,0000000,0000000
};
static unsigned short Q[] = {
0034411,0106743,0115771,0055462,
0035604,0052575,0155171,0045540,
0036325,0030424,0064332,0167756,
0036612,0052366,0063006,0115175,
0036726,0070430,0004533,0124654,
0037011,0022741,0030675,0030711,
0037056,0174452,0127062,0132122,
0037157,0177750,0142041,0072523,
0037277,0177777,0173137,0002627,
0037577,0177777,0177777,0101101
};
#endif
#ifdef IBMPC
static unsigned short P[] = {
0x53ee,0x986f,0x205e,0x3f24,
0xe6e0,0x5602,0x8d83,0x3f64,
0xd0b3,0xed25,0xcaf1,0x3f81,
0xf4b1,0x0c4f,0xfc48,0x3f85,
0x750e,0x22a0,0xd795,0x3f7f,
0xb671,0xda79,0x1059,0x3f7f,
0xf6d7,0xea19,0xb167,0x3f87,
0xbe6d,0x4534,0x5b13,0x3f96,
0x8607,0x09c5,0x1592,0x3fad,
0xbd71,0xfdf4,0x5c85,0x3fdc,
0x0000,0x0000,0x0000,0x3ff0
};
static unsigned short Q[] = {
0x2b66,0x737f,0x31bc,0x3f01,
0x296c,0xbb4f,0x8aaf,0x3f50,
0x5dfe,0x8d1b,0xa622,0x3f7a,
0xd350,0xccc0,0x4a9e,0x3f91,
0x7535,0x012b,0xce23,0x3f9a,
0xa639,0x2637,0x24bc,0x3fa1,
0x568a,0x55c6,0xdf25,0x3fa5,
0x2eaa,0x1884,0xfffd,0x3fad,
0xe0b3,0xfecb,0xffff,0x3fb7,
0xf048,0xffff,0xffff,0x3fcf
};
#endif
#ifdef MIEEE
static unsigned short P[] = {
0x3f24,0x205e,0x986f,0x53ee,
0x3f64,0x8d83,0x5602,0xe6e0,
0x3f81,0xcaf1,0xed25,0xd0b3,
0x3f85,0xfc48,0x0c4f,0xf4b1,
0x3f7f,0xd795,0x22a0,0x750e,
0x3f7f,0x1059,0xda79,0xb671,
0x3f87,0xb167,0xea19,0xf6d7,
0x3f96,0x5b13,0x4534,0xbe6d,
0x3fad,0x1592,0x09c5,0x8607,
0x3fdc,0x5c85,0xfdf4,0xbd71,
0x3ff0,0x0000,0x0000,0x0000
};
static unsigned short Q[] = {
0x3f01,0x31bc,0x737f,0x2b66,
0x3f50,0x8aaf,0xbb4f,0x296c,
0x3f7a,0xa622,0x8d1b,0x5dfe,
0x3f91,0x4a9e,0xccc0,0xd350,
0x3f9a,0xce23,0x012b,0x7535,
0x3fa1,0x24bc,0x2637,0xa639,
0x3fa5,0xdf25,0x55c6,0x568a,
0x3fad,0xfffd,0x1884,0x2eaa,
0x3fb7,0xffff,0xfecb,0xe0b3,
0x3fcf,0xffff,0xffff,0xf048
};
#endif
double ellpe(x)
double x;
{
if( (x <= 0.0) || (x > 1.0) )
{
if( x == 0.0 )
return( 1.0 );
mtherr( "ellpe", DOMAIN );
return( 0.0 );
}
return( polevl(x,P,10) - log(x) * (x * polevl(x,Q,9)) );
}
|