File: jn.c

package info (click to toggle)
grace 1%3A5.1.25-18
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 14,828 kB
  • sloc: ansic: 102,045; sh: 5,492; makefile: 572; fortran: 56; perl: 56
file content (134 lines) | stat: -rw-r--r-- 1,983 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*							jn.c
 *
 *	Bessel function of integer order
 *
 *
 *
 * SYNOPSIS:
 *
 * int n;
 * double x, y, jn();
 *
 * y = jn( n, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns Bessel function of order n, where n is a
 * (possibly negative) integer.
 *
 * The ratio of jn(x) to j0(x) is computed by backward
 * recurrence.  First the ratio jn/jn-1 is found by a
 * continued fraction expansion.  Then the recurrence
 * relating successive orders is applied until j0 or j1 is
 * reached.
 *
 * If n = 0 or 1 the routine for j0 or j1 is called
 * directly.
 *
 *
 *
 * ACCURACY:
 *
 *                      Absolute error:
 * arithmetic   range      # trials      peak         rms
 *    DEC       0, 30        5500       6.9e-17     9.3e-18
 *    IEEE      0, 30        5000       4.4e-16     7.9e-17
 *
 *
 * Not suitable for large n or x. Use jv() instead.
 *
 */

/*							jn.c
Cephes Math Library Release 2.0:  April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
#include "cephes.h"

#ifndef HAVE_JN

extern double MACHEP;

double jn( n, x )
int n;
double x;
{
double pkm2, pkm1, pk, xk, r, ans;
int k, sign;

if( n < 0 )
	{
	n = -n;
	if( (n & 1) == 0 )	/* -1**n */
		sign = 1;
	else
		sign = -1;
	}
else
	sign = 1;

if( x < 0.0 )
	{
	if( n & 1 )
		sign = -sign;
	x = -x;
	}

if( n == 0 )
	return( sign * j0(x) );
if( n == 1 )
	return( sign * j1(x) );
if( n == 2 )
	return( sign * (2.0 * j1(x) / x  -  j0(x)) );

if( x < MACHEP )
	return( 0.0 );

/* continued fraction */
#ifdef DEC
k = 56;
#else
k = 53;
#endif

pk = 2 * (n + k);
ans = pk;
xk = x * x;

do
	{
	pk -= 2.0;
	ans = pk - (xk/ans);
	}
while( --k > 0 );
ans = x/ans;

/* backward recurrence */

pk = 1.0;
pkm1 = 1.0/ans;
k = n-1;
r = 2 * k;

do
	{
	pkm2 = (pkm1 * r  -  pk * x) / x;
	pk = pkm1;
	pkm1 = pkm2;
	r -= 2.0;
	}
while( --k > 0 );

if( fabs(pk) > fabs(pkm1) )
	ans = j1(x)/pk;
else
	ans = j0(x)/pkm1;
return( sign * ans );
}

#endif