1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
/* polyn.c
* polyr.c
* Arithmetic operations on polynomials
*
* In the following descriptions a, b, c are polynomials of degree
* na, nb, nc respectively. The degree of a polynomial cannot
* exceed a run-time value MAXPOL. An operation that attempts
* to use or generate a polynomial of higher degree may produce a
* result that suffers truncation at degree MAXPOL. The value of
* MAXPOL is set by calling the function
*
* polini( maxpol );
*
* where maxpol is the desired maximum degree. This must be
* done prior to calling any of the other functions in this module.
* Memory for internal temporary polynomial storage is allocated
* by polini().
*
* Each polynomial is represented by an array containing its
* coefficients, together with a separately declared integer equal
* to the degree of the polynomial. The coefficients appear in
* ascending order; that is,
*
* 2 na
* a(x) = a[0] + a[1] * x + a[2] * x + ... + a[na] * x .
*
*
*
* sum = poleva( a, na, x ); Evaluate polynomial a(t) at t = x.
* polprt( a, na, D ); Print the coefficients of a to D digits.
* polclr( a, na ); Set a identically equal to zero, up to a[na].
* polmov( a, na, b ); Set b = a.
* poladd( a, na, b, nb, c ); c = b + a, nc = max(na,nb)
* polsub( a, na, b, nb, c ); c = b - a, nc = max(na,nb)
* polmul( a, na, b, nb, c ); c = b * a, nc = na+nb
*
*
* Division:
*
* i = poldiv( a, na, b, nb, c ); c = b / a, nc = MAXPOL
*
* returns i = the degree of the first nonzero coefficient of a.
* The computed quotient c must be divided by x^i. An error message
* is printed if a is identically zero.
*
*
* Change of variables:
* If a and b are polynomials, and t = a(x), then
* c(t) = b(a(x))
* is a polynomial found by substituting a(x) for t. The
* subroutine call for this is
*
* polsbt( a, na, b, nb, c );
*
*
* Notes:
* poldiv() is an integer routine; poleva() is double.
* Any of the arguments a, b, c may refer to the same array.
*
*/
#include "mconf.h"
#include "cephes.h"
#include <stdio.h>
#include <stdlib.h>
/* Pointers to internal arrays. Note poldiv() allocates
* and deallocates some temporary arrays every time it is called.
*/
static double *pt1 = 0;
static double *pt2 = 0;
static double *pt3 = 0;
/* Maximum degree of polynomial. */
int MAXPOL = 0;
extern int MAXPOL;
/* Number of bytes (chars) in maximum size polynomial. */
static int psize = 0;
/* Initialize max degree of polynomials
* and allocate temporary storage.
*/
void polini( maxdeg )
int maxdeg;
{
MAXPOL = maxdeg;
psize = (maxdeg + 1) * sizeof(double);
/* Release previously allocated memory, if any. */
if( pt3 )
free(pt3);
if( pt2 )
free(pt2);
if( pt1 )
free(pt1);
/* Allocate new arrays */
pt1 = (double * )malloc(psize); /* used by polsbt */
pt2 = (double * )malloc(psize); /* used by polsbt */
pt3 = (double * )malloc(psize); /* used by polmul */
/* Report if failure */
if( (pt1 == NULL) || (pt2 == NULL) || (pt3 == NULL) )
{
mtherr( "polini", ERANGE );
exit(1);
}
}
/* Set a = 0.
*/
void polclr( a, n )
register double *a;
int n;
{
int i;
if( n > MAXPOL )
n = MAXPOL;
for( i=0; i<=n; i++ )
*a++ = 0.0;
}
/* Set b = a.
*/
void polmov( a, na, b )
register double *a, *b;
int na;
{
int i;
if( na > MAXPOL )
na = MAXPOL;
for( i=0; i<= na; i++ )
{
*b++ = *a++;
}
}
/* c = b * a.
*/
void polmul( a, na, b, nb, c )
double a[], b[], c[];
int na, nb;
{
int i, j, k, nc;
double x;
nc = na + nb;
polclr( pt3, MAXPOL );
for( i=0; i<=na; i++ )
{
x = a[i];
for( j=0; j<=nb; j++ )
{
k = i + j;
if( k > MAXPOL )
break;
pt3[k] += x * b[j];
}
}
if( nc > MAXPOL )
nc = MAXPOL;
for( i=0; i<=nc; i++ )
c[i] = pt3[i];
}
/* c = b + a.
*/
void poladd( a, na, b, nb, c )
double a[], b[], c[];
int na, nb;
{
int i, n;
if( na > nb )
n = na;
else
n = nb;
if( n > MAXPOL )
n = MAXPOL;
for( i=0; i<=n; i++ )
{
if( i > na )
c[i] = b[i];
else if( i > nb )
c[i] = a[i];
else
c[i] = b[i] + a[i];
}
}
/* c = b - a.
*/
void polsub( a, na, b, nb, c )
double a[], b[], c[];
int na, nb;
{
int i, n;
if( na > nb )
n = na;
else
n = nb;
if( n > MAXPOL )
n = MAXPOL;
for( i=0; i<=n; i++ )
{
if( i > na )
c[i] = b[i];
else if( i > nb )
c[i] = -a[i];
else
c[i] = b[i] - a[i];
}
}
/* c = b/a
*/
int poldiv( a, na, b, nb, c )
double a[], b[], c[];
int na, nb;
{
double quot;
double *ta, *tb, *tq;
int i, j, k, sing;
sing = 0;
/* Allocate temporary arrays. This would be quicker
* if done automatically on the stack, but stack space
* may be hard to obtain on a small computer.
*/
ta = (double * )malloc( psize );
polclr( ta, MAXPOL );
polmov( a, na, ta );
tb = (double * )malloc( psize );
polclr( tb, MAXPOL );
polmov( b, nb, tb );
tq = (double * )malloc( psize );
polclr( tq, MAXPOL );
/* What to do if leading (constant) coefficient
* of denominator is zero.
*/
if( a[0] == 0.0 )
{
for( i=0; i<=na; i++ )
{
if( ta[i] != 0.0 )
goto nzero;
}
mtherr( "poldiv", SING );
goto done;
nzero:
/* Reduce the degree of the denominator. */
for( i=0; i<na; i++ )
ta[i] = ta[i+1];
ta[na] = 0.0;
if( b[0] != 0.0 )
{
/* Optional message:
printf( "poldiv singularity, divide quotient by x\n" );
*/
sing += 1;
}
else
{
/* Reduce degree of numerator. */
for( i=0; i<nb; i++ )
tb[i] = tb[i+1];
tb[nb] = 0.0;
}
/* Call self, using reduced polynomials. */
sing += poldiv( ta, na, tb, nb, c );
goto done;
}
/* Long division algorithm. ta[0] is nonzero.
*/
for( i=0; i<=MAXPOL; i++ )
{
quot = tb[i]/ta[0];
for( j=0; j<=MAXPOL; j++ )
{
k = j + i;
if( k > MAXPOL )
break;
tb[k] -= quot * ta[j];
}
tq[i] = quot;
}
/* Send quotient to output array. */
polmov( tq, MAXPOL, c );
done:
/* Restore allocated memory. */
free(tq);
free(tb);
free(ta);
return( sing );
}
/* Change of variables
* Substitute a(y) for the variable x in b(x).
* x = a(y)
* c(x) = b(x) = b(a(y)).
*/
void polsbt( a, na, b, nb, c )
double a[], b[], c[];
int na, nb;
{
int i, j, k, n2;
double x;
/* 0th degree term:
*/
polclr( pt1, MAXPOL );
pt1[0] = b[0];
polclr( pt2, MAXPOL );
pt2[0] = 1.0;
n2 = 0;
for( i=1; i<=nb; i++ )
{
/* Form ith power of a. */
polmul( a, na, pt2, n2, pt2 );
n2 += na;
x = b[i];
/* Add the ith coefficient of b times the ith power of a. */
for( j=0; j<=n2; j++ )
{
if( j > MAXPOL )
break;
pt1[j] += x * pt2[j];
}
}
k = n2 + nb;
if( k > MAXPOL )
k = MAXPOL;
for( i=0; i<=k; i++ )
c[i] = pt1[i];
}
/* Evaluate polynomial a(t) at t = x.
*/
double poleva( a, na, x )
double a[];
int na;
double x;
{
double s;
int i;
s = a[na];
for( i=na-1; i>=0; i-- )
{
s = s * x + a[i];
}
return(s);
}
|