1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* stdtr.c
*
* Student's t distribution
*
*
*
* SYNOPSIS:
*
* double t, stdtr();
* short k;
*
* y = stdtr( k, t );
*
*
* DESCRIPTION:
*
* Computes the integral from minus infinity to t of the Student
* t distribution with integer k > 0 degrees of freedom:
*
* t
* -
* | |
* - | 2 -(k+1)/2
* | ( (k+1)/2 ) | ( x )
* ---------------------- | ( 1 + --- ) dx
* - | ( k )
* sqrt( k pi ) | ( k/2 ) |
* | |
* -
* -inf.
*
* Relation to incomplete beta integral:
*
* 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
* where
* z = k/(k + t**2).
*
* For t < -2, this is the method of computation. For higher t,
* a direct method is derived from integration by parts.
* Since the function is symmetric about t=0, the area under the
* right tail of the density is found by calling the function
* with -t instead of t.
*
* ACCURACY:
*
* Tested at random 1 <= k <= 25. The "domain" refers to t.
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -100,-2 50000 5.9e-15 1.4e-15
* IEEE -2,100 500000 2.7e-15 4.9e-17
*/
/* stdtri.c
*
* Functional inverse of Student's t distribution
*
*
*
* SYNOPSIS:
*
* double p, t, stdtri();
* int k;
*
* t = stdtri( k, p );
*
*
* DESCRIPTION:
*
* Given probability p, finds the argument t such that stdtr(k,t)
* is equal to p.
*
* ACCURACY:
*
* Tested at random 1 <= k <= 100. The "domain" refers to p:
* Relative error:
* arithmetic domain # trials peak rms
* IEEE .001,.999 25000 5.7e-15 8.0e-16
* IEEE 10^-6,.001 25000 2.0e-12 2.9e-14
*/
/*
Cephes Math Library Release 2.3: March, 1995
Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
#include "cephes.h"
extern double PI, MACHEP, MAXNUM;
double stdtr( k, t )
int k;
double t;
{
double x, rk, z, f, tz, p, xsqk;
int j;
if( k <= 0 )
{
mtherr( "stdtr", DOMAIN );
return(0.0);
}
if( t == 0 )
return( 0.5 );
if( t < -2.0 )
{
rk = k;
z = rk / (rk + t * t);
p = 0.5 * incbet( 0.5*rk, 0.5, z );
return( p );
}
/* compute integral from -t to + t */
if( t < 0 )
x = -t;
else
x = t;
rk = k; /* degrees of freedom */
z = 1.0 + ( x * x )/rk;
/* test if k is odd or even */
if( (k & 1) != 0)
{
/* computation for odd k */
xsqk = x/sqrt(rk);
p = atan( xsqk );
if( k > 1 )
{
f = 1.0;
tz = 1.0;
j = 3;
while( (j<=(k-2)) && ( (tz/f) > MACHEP ) )
{
tz *= (j-1)/( z * j );
f += tz;
j += 2;
}
p += f * xsqk/z;
}
p *= 2.0/PI;
}
else
{
/* computation for even k */
f = 1.0;
tz = 1.0;
j = 2;
while( ( j <= (k-2) ) && ( (tz/f) > MACHEP ) )
{
tz *= (j - 1)/( z * j );
f += tz;
j += 2;
}
p = f * x/sqrt(z*rk);
}
/* common exit */
if( t < 0 )
p = -p; /* note destruction of relative accuracy */
p = 0.5 + 0.5 * p;
return(p);
}
double stdtri( k, p )
int k;
double p;
{
double t, rk, z;
int rflg;
if( k <= 0 || p <= 0.0 || p >= 1.0 )
{
mtherr( "stdtri", DOMAIN );
return(0.0);
}
rk = k;
if( p > 0.25 && p < 0.75 )
{
if( p == 0.5 )
return( 0.0 );
z = 1.0 - 2.0 * p;
z = incbi( 0.5, 0.5*rk, fabs(z) );
t = sqrt( rk*z/(1.0-z) );
if( p < 0.5 )
t = -t;
return( t );
}
rflg = -1;
if( p >= 0.5)
{
p = 1.0 - p;
rflg = 1;
}
z = incbi( 0.5*rk, 0.5, 2.0*p );
if( MAXNUM * z < rk )
return(rflg* MAXNUM);
t = sqrt( rk/z - rk );
return( rflg * t );
}
|