1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
Description: Add multiple non-linear data fitting functions
One of the most used features in software for scientific data analysis is
the ability to perform non linear peak fitting (specifically Lorentzian and
Gaussian fits). Xmgrace sorely lacks this capability, unless you consider
adding manually the required formula.
.
This implements a substantial library of such functions and documentation
for their use.
Author: Nicola Ferralis <feranick@hotmail.com>
Bug: http://plasma-gate.weizmann.ac.il/Grace/phpbb/w3todo.php?action=view_report&project_id=1&todo_id=2220
Bug-Debian: http://bugs.debian.org/578435
Bug-Ubuntu: https://bugs.launchpad.net/ubuntu/+source/grace/+bug/535459
Last-Update: 2010-05-26
Index: grace-5.1.22/doc/UsersGuide.html
===================================================================
--- grace-5.1.22.orig/doc/UsersGuide.html 2008-05-21 13:52:14.000000000 -0700
+++ grace-5.1.22/doc/UsersGuide.html 2010-07-27 11:01:29.000000000 -0700
@@ -1516,6 +1516,103 @@
sample range or to produce an evenly spaced set from an irregular
one.</P>
+<P>Under the "Library" menu, several functions are available under the
+categories: "Gaussian Functions", "Lorentzian Functions", "Peak Functions",
+ "Periodic Peak Functions" and "Baseline Functions".</P>
+
+<P><i>Gaussian</i><br>  y = A0 + (A3*2*sqrt(ln(2)/pi)/A2)*exp(-4*ln(2)*((x-A1)/A2)^2)<br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Full width at half
+maximum; A3: Peak area.<br> The center and initial amplitude of the peak can be set from
+ user input (via mouse coordinates). </P>
+
+<br>
+<P><i>Gaussian (Chromatography):</i><br>
+  y = A0 + (1/sqrt(2*pi))*(A3/A2)*exp(-(x-A1)^2/2*A2^2)
+ A0: Baseline offset; A1: Center of the peak (retention time); A2:
+ Standard deviation of the peak; A3: Peak area. <br> The center and initial amplitude of the peak can be set from
+ user input (via mouse coordinates). </P>
+
+<br>
+<P><i>Lorentzian</i><br>  y = A0 + (2*A2*A3/pi)/(4*(x-A1)^2 + A2^2)<br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Full width at half
+maximum; A3: Peak area. <br> The center and initial amplitude of the peak can be set from
+ user input (via mouse coordinates).</P>
+
+<br>
+<P><i>Peak Functions</i><br>
+<i>Pseudo Voigt 1</i><br>
+  y = A0 + A3 * (A4*(2/pi)*A2/(4*(x-A1)^2+A2^2) + <br>(1-A4)*exp(-4*ln(2)*(x-A1)^2/A2^2)*(sqrt(4*ln(2))/(A2*sqrt(pi))))<br>
+  where: Gaussian and Lorentzian have the same width; A0: Baseline offset;
+ A1: Center of the peak; A2: Full width at half maximum; A3: Amplitude;
+ A4: Profile shape factor.<br>
+<i>Pseudo Voigt 2</i><br>
+  y = A0 + A3 * (A5*(2/pi)*A2/(4*(x-A1)^2+A2^2) + (1-A5)*exp(-4*ln(2)*(x-A1)^2/A4^2)*(sqrt(4*ln(2))/(A2*sqrt(pi))))<br>
+  where: Gaussian and Lorentzian have different width; A0: Baseline offset;
+ A1: Center of the peak; A2: Full width at half maximum; A3: Amplitude;
+ A4: Profile shape factor.<br>
+<i>Doniach-Sunjic</i><br>
+  y = A0 + A3*cos((pi*A4/2)+(1-A4)*atan((x-A1)/A2))/(A2^2+(x-A1)^2)^((1-A4)/2)<br>
+  where:A0: Baseline offset; A1: Center of the peak; A2: Full width at half maximum;<br>
+ A3: Peak area; A4: Asymmetry parameter.<br>
+<i>Asymmetric double Sigmoidal</i><br>
+  y = A0 + A3*(1/(1+exp(-(x-A1+A2/2)/A4)))*(1-(1/(1+exp(-(x-A1-A2/2)/A5))))<br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Width 1;
+ A3: Amplitude; A4: Width 2; A5: Width 5.<br>
+<i>Logarithm Normal:</i> <br>
+  y = A0 + A3*exp(-((ln(x)-ln(A1))^2)/(2*A2))<br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Width <br>
+<i>Gram-Charlier A-Series (GCAS)</i><br>
+  y = A0 + A3/(A2*sqrt(2*pi))*exp(-0.5*((x-A1)/A2)^2)*(1+(A4/6)*
+ (((x-A1)/A2)^3-3*(x-A1)/A2)+(A5/24)*(((x-A1)/A2)^4-6*((x-A1)/A2)^3+3))<br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Standard deviation;
+ A3: Peak Area; A4: Skew; A5: Excess. <br>
+<i>Edgeworth-Cramer Series</i><br>
+  y = A0 + A3/(A2*sqrt(2*pi))*exp(-0.5*((x-A1)/A2)^2)*(1+(A4/6)*
+ (((x-A1)/A2)^3-3*(x-A1)/A2)+(A5/24)*(((x-A1)/A2)^4-6 *((x-A1)/A2)^3+3)
+ +(A5^2/720)*(((x-A1)/A2)^6-15*((x-A1)/A2)^4+45*((x-A1)/A2)^2-15))<br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Standard deviation;
+ A3: Peak Area; A4: Skew; A5: Excess. <br>
+<i>Inverse Polynomial</i><br>
+  y=A0+A3/(1+ A4*(2*(x-A1)/A2)^2 + A5*(2*(x-A1)/A2)^4 + A6*(2*(x-A1)/A2)^6) <br>
+  where: A0: Baseline offset; A1: Center of the peak; A2: Standard deviation;
+ A3: Peak Area; A4, A5, A6: Parameters. <br>
+ </P>
+
+<br>
+<P><i>Periodic Peak Functions</i><br>
+<i>Sine:</i> <br>
+ y=A0+A3*sin(pi*(x-A1)/A2)<br>
+ where: A0: Baseline offset; A1: Center; A2: Width; A3: Amplitude.<br>
+<i>Sine Square: </i><br>
+ y=A0+A3*sin(pi*(x-A1)/A2)^2<br>
+ where: A0: Baseline offset; A1: Center; A2: Width; A3: Amplitude.<br>
+<i>Sine damp: </i><br>
+ y=A0+A3*exp(-x/A4)*sin(pi*(x-A1)/A2)<br>
+ where: A0: Baseline offset; A1: Center; A2: Width; A3: Amplitude; A4: Decay time. <br>
+</P>
+
+<br>
+<P><i>Baseline Functions</i><br>
+<i>Exponential Decay 1:</i><br>
+ y=A0+A3*exp(-(x-A1)/A2)<br>
+<b>Exponential Decay 2:</b> <br>
+ y=A0+A3*exp(-(x-A1)/A2)+A6*exp(-(x-A4)/A5);<br>
+<i>Exponential Growth 1:</i> <br>
+ y=A0+A3*exp((x-A1)/A2)<br>
+<i>Exponential Growth 2: </i><br>
+ y=A0+A3*exp(-(x-A1)/A2)+A6*exp((x-A4)/A5);<br>
+<i>Hyperbolic:</i><br>
+ y=A0+(A1*x)/(A2+x)<br>
+<i>Bradley:</i> <br>
+ y=A0*ln(-A1*ln(x))<br>
+<i>Logarithm 3 Parameters: </i><br>
+ y=A0-A1*ln(x+A2)<br>
+<i>Weibull Probability Density 2 Parameters: </i><br>
+ y=(A0/A1)*((x/A1)^(A0-1))*exp(-(x/A1)^A0)<br>
+<i>Weibull Cumulative Distribution 2 Parameters: </i><br>
+ y=1-exp(-(x/A1)^A0)<br>
+</P>
+
<H3><A NAME="correlation/covariance"></A> Correlation/covariance </H3>
<P>This popup can be used to compute autocorrelation
Index: grace-5.1.22/src/draw.c
===================================================================
--- grace-5.1.22.orig/src/draw.c 2005-11-19 13:53:24.000000000 -0800
+++ grace-5.1.22/src/draw.c 2010-07-27 10:50:30.000000000 -0700
@@ -258,6 +258,12 @@
return (vp);
}
+WPoint Vpoint2Wpoint(VPoint vp)
+{
+ WPoint wp;
+ view2world(vp.x, vp.y, &wp.x, &wp.y);
+ return (wp);
+}
void symplus(VPoint vp, double s)
{
Index: grace-5.1.22/src/draw.h
===================================================================
--- grace-5.1.22.orig/src/draw.h 2004-07-03 13:47:45.000000000 -0700
+++ grace-5.1.22/src/draw.h 2010-07-27 10:50:30.000000000 -0700
@@ -236,6 +236,7 @@
double xy_xconv(double wx);
double xy_yconv(double wy);
VPoint Wpoint2Vpoint(WPoint wp);
+WPoint Vpoint2Wpoint(VPoint vp);
int world2view(double x, double y, double *xv, double *yv);
void view2world(double xv, double yv, double *xw, double *yw);
Index: grace-5.1.22/src/events.c
===================================================================
--- grace-5.1.22.orig/src/events.c 2008-04-26 12:12:11.000000000 -0700
+++ grace-5.1.22/src/events.c 2010-07-27 10:50:30.000000000 -0700
@@ -111,6 +111,7 @@
int axisno;
Datapoint dpoint;
GLocator locator;
+ static char buf[256];
cg = get_cg();
get_tracking_props(&track_setno, &move_dir, &add_at);
@@ -487,6 +488,60 @@
}
select_line(anchor_x, anchor_y, x, y, 0);
break;
+ case PEAK_POS:
+ anchor_point(x, y, vp);
+ sprintf(buf, "Initial peak position, intensity: %f, %f \n", Vpoint2Wpoint(vp).x, Vpoint2Wpoint(vp).y);
+ stufftext(buf);
+ nonl_parms[1].value = Vpoint2Wpoint(vp).x;
+ nonl_parms[3].value = Vpoint2Wpoint(vp).y;
+ set_actioncb(NULL);
+ update_nonl_frame();
+ break;
+ case PEAK_POS1:
+ anchor_point(x, y, vp);
+ sprintf(buf, "Initial position, intensity peak #1: %f, %f \n", Vpoint2Wpoint(vp).x, Vpoint2Wpoint(vp).y);
+ stufftext(buf);
+ nonl_parms[1].value = Vpoint2Wpoint(vp).x;
+ nonl_parms[3].value = Vpoint2Wpoint(vp).y;
+ set_actioncb((void*) PEAK_POS2);
+ update_nonl_frame();
+ break;
+ case PEAK_POS2:
+ anchor_point(x, y, vp);
+ sprintf(buf, "Initial position, intensity peak #2: %f, %f \n", Vpoint2Wpoint(vp).x, Vpoint2Wpoint(vp).y);
+ stufftext(buf);
+ nonl_parms[4].value = Vpoint2Wpoint(vp).x;
+ nonl_parms[6].value = Vpoint2Wpoint(vp).y;
+ set_actioncb(NULL);
+ update_nonl_frame();
+ break;
+ case PEAK_POS1B:
+ anchor_point(x, y, vp);
+ sprintf(buf, "Initial position, intensity peak #1: %f, %f \n", Vpoint2Wpoint(vp).x, Vpoint2Wpoint(vp).y);
+ stufftext(buf);
+ nonl_parms[1].value = Vpoint2Wpoint(vp).x;
+ nonl_parms[3].value = Vpoint2Wpoint(vp).y;
+ set_actioncb((void*) PEAK_POS2B);
+ update_nonl_frame();
+ break;
+ case PEAK_POS2B:
+ anchor_point(x, y, vp);
+ sprintf(buf, "Initial position, intensity peak #2: %f, %f \n", Vpoint2Wpoint(vp).x, Vpoint2Wpoint(vp).y);
+ stufftext(buf);
+ nonl_parms[4].value = Vpoint2Wpoint(vp).x;
+ nonl_parms[6].value = Vpoint2Wpoint(vp).y;
+ set_actioncb((void*) PEAK_POS3B);
+ update_nonl_frame();
+ break;
+ case PEAK_POS3B:
+ anchor_point(x, y, vp);
+ sprintf(buf, "Initial position, intensity peak #3: %f, %f \n", Vpoint2Wpoint(vp).x, Vpoint2Wpoint(vp).y);
+ stufftext(buf);
+ nonl_parms[7].value = Vpoint2Wpoint(vp).x;
+ nonl_parms[9].value = Vpoint2Wpoint(vp).y;
+ set_actioncb(NULL);
+ update_nonl_frame();
+ break;
default:
break;
}
@@ -567,6 +622,7 @@
void set_action(CanvasAction act)
{
int i;
+ static char buf[256];
/*
* indicate what's happening with a message in the left footer
*/
@@ -760,6 +816,42 @@
set_cursor(0);
set_left_footer("Pick ending point");
break;
+ case PEAK_POS:
+ set_cursor(0);
+ set_left_footer("Click on the approximate position of the maximum of the peak");
+ sprintf(buf, "Click on the approximate position of the maximum of the peak.\n");
+ stufftext(buf);
+ break;
+ case PEAK_POS1:
+ set_cursor(0);
+ set_left_footer("Click on the approximate position of the maximum of the peak #1");
+ sprintf(buf, "Click on the approximate position of the maximum of the peak #1.\n");
+ stufftext(buf);
+ break;
+ case PEAK_POS2:
+ set_cursor(0);
+ set_left_footer("Click on the approximate position of the maximum of the peak #2");
+ sprintf(buf, "Click on the approximate position of the maximum of the peak #2.\n");
+ stufftext(buf);
+ break;
+ case PEAK_POS1B:
+ set_cursor(0);
+ set_left_footer("Click on the approximate position of the maximum of the peak #1");
+ sprintf(buf, "Click on the approximate position of the maximum of the peak #1.\n");
+ stufftext(buf);
+ break;
+ case PEAK_POS2B:
+ set_cursor(0);
+ set_left_footer("Click on the approximate position of the maximum of the peak #2");
+ sprintf(buf, "Click on the approximate position of the maximum of the peak #2.\n");
+ stufftext(buf);
+ break;
+ case PEAK_POS3B:
+ set_cursor(0);
+ set_left_footer("Click on the approximate position of the maximum of the peak #3");
+ sprintf(buf, "Click on the approximate position of the maximum of the peak #3.\n");
+ stufftext(buf);
+ break;
}
action_flag = act;
Index: grace-5.1.22/src/events.h
===================================================================
--- grace-5.1.22.orig/src/events.h 2004-07-03 13:47:45.000000000 -0700
+++ grace-5.1.22/src/events.h 2010-07-27 10:50:30.000000000 -0700
@@ -81,7 +81,13 @@
ZOOMY_1ST,
ZOOMY_2ND,
DISLINE1ST,
- DISLINE2ND
+ DISLINE2ND,
+ PEAK_POS,
+ PEAK_POS1,
+ PEAK_POS2,
+ PEAK_POS1B,
+ PEAK_POS2B,
+ PEAK_POS3B
} CanvasAction;
/* add points at */
Index: grace-5.1.22/src/nonlwin.c
===================================================================
--- grace-5.1.22.orig/src/nonlwin.c 2010-07-27 10:50:30.000000000 -0700
+++ grace-5.1.22/src/nonlwin.c 2010-07-27 11:01:29.000000000 -0700
@@ -7,6 +7,7 @@
* Copyright (c) 1996-2000 Grace Development Team
*
* Maintained by Evgeny Stambulchik
+ * Additional non linear fitting functions by Nicola Ferralis
*
*
* All Rights Reserved
@@ -47,6 +48,7 @@
#include "parser.h"
#include "motifinc.h"
#include "protos.h"
+#include "events.h"
/* nonlprefs.load possible values */
#define LOAD_VALUES 0
@@ -98,6 +100,34 @@
static void nonl_wf_cb(int value, void *data);
static void do_constr_toggle(int onoff, void *data);
+static void nonl_Lorentzian_cb(void *data);
+static void nonl_doubleLorentzian_cb(void *data);
+static void nonl_tripleLorentzian_cb(void *data);
+static void nonl_Gaussian_cb(void *data);
+static void nonl_doubleGaussian_cb(void *data);
+static void nonl_tripleGaussian_cb(void *data);
+static void nonl_Gaussian2_cb(void *data);
+static void nonl_PsVoight1_cb(void *data);
+static void nonl_PsVoight2_cb(void *data);
+static void nonl_DS_cb(void *data);
+static void nonl_Asym2Sig_cb(void *data);
+static void nonl_LogNormal_cb(void *data);
+static void nonl_GCAS_cb(void *data);
+static void nonl_ECS_cb(void *data);
+static void nonl_InvPoly_cb(void *data);
+static void nonl_Sine_cb(void *data);
+static void nonl_Sinesq_cb(void *data);
+static void nonl_Sinedamp_cb(void *data);
+static void nonl_ExpDec1_cb(void *data);
+static void nonl_ExpDec2_cb(void *data);
+static void nonl_ExpGrow1_cb(void *data);
+static void nonl_ExpGrow2_cb(void *data);
+static void nonl_Hyperbol_cb(void *data);
+static void nonl_Bradley_cb(void *data);
+static void nonl_Log3_cb(void *data);
+static void nonl_WeibullPD_cb(void *data);
+static void nonl_WeibullCD_cb(void *data);
+
static void update_nonl_frame_cb(void *data);
static void reset_nonl_frame_cb(void *data);
@@ -118,7 +148,7 @@
if (nonl_frame == NULL) {
int i;
OptionItem np_option_items[MAXPARM + 1], option_items[5];
- Widget menubar, menupane;
+ Widget menubar, menupane, submenugauss, submenulorentz, submenupeak, submenubaseline, submenuperiodic;
Widget nonl_tab, nonl_main, nonl_advanced;
Widget sw, title_fr, fr3, rc1, rc2, rc3, lab;
@@ -145,6 +175,54 @@
CreateMenuSeparator(menupane);
CreateMenuButton(menupane, "Update", 'U', update_nonl_frame_cb, NULL);
+ menupane = CreateMenu(menubar, "Library", 'L', FALSE);
+
+ submenugauss = CreateMenu(menupane, "Gaussian Functions", 'G', FALSE);
+ CreateMenuButton(submenugauss, "Single", 'g', nonl_Gaussian_cb, NULL);
+ CreateMenuButton(submenugauss, "Double", 'D', nonl_doubleGaussian_cb, NULL);
+ CreateMenuButton(submenugauss, "Triple", 'T', nonl_tripleGaussian_cb, NULL);
+ CreateMenuSeparator(submenugauss);
+ CreateMenuButton(submenugauss, "Single (chromatography)", 'c', nonl_Gaussian2_cb, NULL);
+ CreateMenuSeparator(menupane);
+
+ submenulorentz = CreateMenu(menupane, "Lorentzian Functions", 'L', FALSE);
+ CreateMenuButton(submenulorentz, "Single", 'S', nonl_Lorentzian_cb, NULL);
+ CreateMenuButton(submenulorentz, "Double", 'D', nonl_doubleLorentzian_cb, NULL);
+ CreateMenuButton(submenulorentz, "Triple", 'T', nonl_tripleLorentzian_cb, NULL);
+ CreateMenuSeparator(menupane);
+
+ submenupeak = CreateMenu(menupane, "Peak Functions", 'P', FALSE);
+ CreateMenuButton(submenupeak, "Pseudo Voigt 1", 'V', nonl_PsVoight1_cb, NULL);
+ CreateMenuButton(submenupeak, "Pseudo Voigt 2", 'o', nonl_PsVoight2_cb, NULL);
+ CreateMenuButton(submenupeak, "Doniach-Sunjic", 'D', nonl_DS_cb, NULL);
+ CreateMenuButton(submenupeak, "Asymmetric Double Sigmoidal", 'S', nonl_Asym2Sig_cb, NULL);
+ CreateMenuButton(submenupeak, "LogNormal", 'L', nonl_LogNormal_cb, NULL);
+ CreateMenuButton(submenupeak, "Gram-Charlier A-Series", 'C', nonl_GCAS_cb, NULL);
+ CreateMenuButton(submenupeak, "Edgeworth-Cramer Series", 'E', nonl_ECS_cb, NULL);
+ CreateMenuButton(submenupeak, "Inverse Polynomial", 'I', nonl_InvPoly_cb, NULL);
+ CreateMenuSeparator(menupane);
+
+ submenuperiodic = CreateMenu(menupane, "Periodic Peak Functions", 'e', FALSE);
+ CreateMenuButton(submenuperiodic, "Sine", 'S', nonl_Sine_cb, NULL);
+ CreateMenuButton(submenuperiodic, "Sine Square", 'q', nonl_Sinesq_cb, NULL);
+ CreateMenuButton(submenuperiodic, "Sine Damp", 'D', nonl_Sinedamp_cb, NULL);
+ CreateMenuSeparator(menupane);
+
+ submenubaseline = CreateMenu(menupane, "Baseline Functions", 'B', FALSE);
+ CreateMenuButton(submenubaseline, "Exponential Decay 1", 'D', nonl_ExpDec1_cb, NULL);
+ CreateMenuButton(submenubaseline, "Exponential Decay 2", 'e', nonl_ExpDec2_cb, NULL);
+ CreateMenuButton(submenubaseline, "Exponential Growth 1", 'G', nonl_ExpGrow1_cb, NULL);
+ CreateMenuButton(submenubaseline, "Exponential Growth 2", 'r', nonl_ExpGrow2_cb, NULL);
+ CreateMenuButton(submenubaseline, "Hyperbolic Function", 'H', nonl_Hyperbol_cb, NULL);
+ CreateMenuSeparator(submenubaseline);
+ CreateMenuButton(submenubaseline, "Bradley", 'B', nonl_Bradley_cb, NULL);
+ CreateMenuButton(submenubaseline, "Logarithm 3", 'L', nonl_Log3_cb, NULL);
+ CreateMenuSeparator(submenubaseline);
+ CreateMenuButton(submenubaseline, "Weibull Probability Density", 'W', nonl_WeibullPD_cb, NULL);
+ CreateMenuButton(submenubaseline, "Weibull Cumulative", 'w', nonl_WeibullCD_cb, NULL);
+ CreateMenuSeparator(menupane);
+
+ CreateMenuButton(menupane, "Reset fit parameters", 'R', reset_nonl_frame_cb, NULL);
menupane = CreateMenu(menubar, "Help", 'H', TRUE);
CreateMenuHelpButton(menupane, "On fit", 'f',
@@ -712,3 +790,343 @@
}
return TRUE;
}
+
+
+static void nonl_Lorentzian_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Lorentzian function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (2*A2*A3/pi)/(4*(x-A1)^2 + A2^2)");
+ nonl_opts.parnum = 4;
+
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Full width at half maximum\nA3: Peak area\n\n");
+ stufftext(buf);
+
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_doubleLorentzian_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Double Lorentzian function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (2*A2*A3/pi)/(4*(x-A1)^2 + A2^2) + (2*A5*A6/pi)/(4*(x-A4)^2 + A5^2)");
+ nonl_opts.parnum = 7;
+
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+
+ sprintf(buf, "A0: Baseline offset\nA1, A4: Center of peaks 1, 2\nA2, A5: Full width at half maximum of peaks 1, 2\nA3, A6: Area of peaks 1, 2\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS1);
+ update_nonl_frame();
+}
+
+static void nonl_tripleLorentzian_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Double Lorentzian function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (2*A2*A3/pi)/(4*(x-A1)^2 + A2^2) + (2*A5*A6/pi)/(4*(x-A4)^2 + A5^2) + (2*A8*A9/pi)/(4*(x-A7)^2 + A8^2)");
+ nonl_opts.parnum = 10;
+
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+
+ sprintf(buf, "A0: Baseline offset\nA1, A4, A7: Center of peaks 1, 2, 3\nA2, A5, A7: Full width at half maximum of peaks 1, 2, 3\nA3, A6, A9: Area of peaks 1, 2, 3\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS1B);
+ update_nonl_frame();
+}
+
+static void nonl_Gaussian_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Gaussian function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (A3*2*sqrt(ln(2)/pi)/A2)*exp(-4*ln(2)*((x-A1)/A2)^2)");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Full width at half maximum\nA3: Peak area\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_doubleGaussian_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Double Gaussian function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (A3*2*sqrt(ln(2)/pi)/A2)*exp(-4*ln(2)*((x-A1)/A2)^2) + (A6*2*sqrt(ln(2)/pi)/A5)*exp(-4*ln(2)*((x-A4)/A5)^2)");
+ nonl_opts.parnum = 7;
+
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+
+ sprintf(buf, "A0: Baseline offset\nA1, A4: Center of peaks 1, 2\nA2, A5: Full width at half maximum of peaks 1, 2\nA3, A6: Area of peaks 1, 2\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS1);
+ update_nonl_frame();
+}
+
+static void nonl_tripleGaussian_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Double Gaussian function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (A3*2*sqrt(ln(2)/pi)/A2)*exp(-4*ln(2)*((x-A1)/A2)^2) + (A6*2*sqrt(ln(2)/pi)/A5)*exp(-4*ln(2)*((x-A4)/A5)^2)+ (A9*2*sqrt(ln(2)/pi)/A8)*exp(-4*ln(2)*((x-A7)/A8)^2)");
+ nonl_opts.parnum = 10;
+
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+
+ sprintf(buf, "A0: Baseline offset\nA1, A4, A7: Center of peaks 1, 2, 3\nA2, A5, A8: Full width at half maximum of peaks 1, 2, 3\nA3, A6, A9: Area of peaks 1, 2, 3\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS1B);
+ update_nonl_frame();
+}
+
+static void nonl_Gaussian2_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Gaussian (chromatography) function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + (1/sqrt(2*pi))*(A3/A2)*exp(-(x-A1)^2/2*A2^2)");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak (retention time)\nA2: Standard deviation of the peak\nA3: Peak area\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_PsVoight1_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Pseudo Voigt 1 function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3 * (A4*(2/pi)*A2/(4*(x-A1)^2+A2^2) + (1-A4)*exp(-4*ln(2)*(x-A1)^2/A2^2)*(sqrt(4*ln(2))/(A2*sqrt(pi))))");
+ nonl_opts.parnum = 5;
+ for (i=0; i<nonl_opts.parnum-1; i++)
+ {nonl_parms[i].value=1;}
+ nonl_parms[4].value=0.5;
+ sprintf(buf, "Gaussian and Lorentzian have the same width\nA0: Baseline offset\nA1: Center of the peak\nA2: Full width at half maximum\nA3: Amplitude\nA4: Profile shape factor \n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_PsVoight2_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Pseudo Voigt 2 function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3 * (A5*(2/pi)*A2/(4*(x-A1)^2+A2^2) + (1-A5)*exp(-4*ln(2)*(x-A1)^2/A4^2)*(sqrt(4*ln(2))/(A2*sqrt(pi))))");
+ nonl_opts.parnum = 6;
+ for (i=0; i<nonl_opts.parnum-1; i++)
+ {nonl_parms[i].value=1;}
+ nonl_parms[5].value=0.5;
+ sprintf(buf, "Gaussian and Lorentzian have different width\nA0: Baseline offset\nA1: Center of the peak\nA2: Full width at half maximum (Lorentzian)\nA3: Amplitude\nA4: Full width at half maximum (Gaussian) \nA5: Profile shape factor \n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_DS_cb(void *data)
+{ nonl_opts.title = copy_string(nonl_opts.title, "Doniach-Sunjic function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3*cos((pi*A4/2)+(1-A4)*atan((x-A1)/A2))/(A2^2+(x-A1)^2)^((1-A4)/2)");
+ nonl_opts.parnum = 5;
+
+ nonl_parms[0].value=1;
+ nonl_parms[2].value=1;
+ nonl_parms[4].value=0.5;
+
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Full width at half maximum\nA3: Peak area\nA4: Asymmetry parameter \n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_Asym2Sig_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Asymmetric double sigmoidal function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3*(1/(1+exp(-(x-A1+A2/2)/A4)))*(1-(1/(1+exp(-(x-A1-A2/2)/A5))))");
+ nonl_opts.parnum = 6;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Width 1\nA3: Amplitude\nA4: Width 2\nA5: Width 5 \n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_LogNormal_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Log Normal Function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3*exp(-((ln(x)-ln(A1))^2)/(2*A2))");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Width\nA3: Amplitude\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_GCAS_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Gram-Charlier A-Series");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3/(A2*sqrt(2*pi))*exp(-0.5*((x-A1)/A2)^2)*(1+(A4/6)*(((x-A1)/A2)^3-3*(x-A1)/A2)+(A5/24)*(((x-A1)/A2)^4-6*((x-A1)/A2)^3+3))");
+ nonl_opts.parnum = 5;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Standard deviation\nA3: Peak Area\nA4: Skew\nA5: Excess\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_ECS_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Edgeworth-Cramer Series");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y = A0 + A3/(A2*sqrt(2*pi))*exp(-0.5*((x-A1)/A2)^2)*(1+(A4/6)*(((x-A1)/A2)^3-3*(x-A1)/A2)+(A5/24)*(((x-A1)/A2)^4-6*((x-A1)/A2)^3+3) + (A5^2/720)*(((x-A1)/A2)^6-15*((x-A1)/A2)^4+45*((x-A1)/A2)^2-15))");
+ nonl_opts.parnum = 5;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Standard deviation\nA3: Peak Area\nA4: Skew\nA5: Excess\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_InvPoly_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Inverse Polynomial Function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3/(1+ A4*(2*(x-A1)/A2)^2 + A5*(2*(x-A1)/A2)^4 + A6*(2*(x-A1)/A2)^6)");
+ nonl_opts.parnum = 7;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center of the peak\nA2: Standard deviation\nA3: Peak Area\nA4, A5, A6: Parameters\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_Sine_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Sine Function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*sin(pi*(x-A1)/A2)");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center\nA2: Width\nA3: Amplitude\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_Sinesq_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Sine Function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*(sin(pi*(x-A1)/A2))^2");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center\nA2: Width\nA3: Amplitude\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_Sinedamp_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Sine Function");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*exp(-x/A4)*sin(pi*(x-A1)/A2)");
+ nonl_opts.parnum = 5;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ sprintf(buf, "A0: Baseline offset\nA1: Center\nA2: Width\nA3: Amplitude\nA4: Decay time\n\n");
+ stufftext(buf);
+ set_actioncb( (void *) PEAK_POS);
+ update_nonl_frame();
+}
+
+static void nonl_ExpDec1_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Exponential Decay 1");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*exp(-(x-A1)/A2)");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_ExpDec2_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Exponential Decay 2");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*exp(-(x-A1)/A2)+A6*exp(-(x-A4)/A5)");
+ nonl_opts.parnum = 7;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_ExpGrow1_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Exponential Growth 1");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*exp((x-A1)/A2)");
+ nonl_opts.parnum = 4;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_ExpGrow2_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Exponential Growth 2");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+A3*exp((x-A1)/A2)+A6*exp((x-A4)/A5)");
+ nonl_opts.parnum = 7;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_Hyperbol_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Hyperbolic");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0+(A1*x)/(A2+x)");
+ nonl_opts.parnum = 3;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_Bradley_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Bradley");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0*ln(-A1*ln(x))");
+ nonl_opts.parnum = 2;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_Log3_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Logarithm 3");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=A0-A1*ln(x+A2)");
+ nonl_opts.parnum = 3;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_WeibullPD_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Weibull Probability Density");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=(A0/A1)*((x/A1)^(A0-1))*exp(-(x/A1)^A0)");
+ nonl_opts.parnum = 2;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
+
+static void nonl_WeibullCD_cb(void *data)
+{ int i;
+ nonl_opts.title = copy_string(nonl_opts.title, "Weibull Cumulative Distribution");
+ nonl_opts.formula = copy_string(nonl_opts.formula, "y=1-exp(-(x/A1)^A0)");
+ nonl_opts.parnum = 2;
+ for (i=0; i<nonl_opts.parnum; i++)
+ {nonl_parms[i].value=1;}
+ update_nonl_frame();
+}
|