1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
#include "gradm.h"
#include <signal.h>
static struct always_reduce_entry {
char *str;
unsigned int len;
} *always_reduce_paths;
#define GR_LEARN_PID_PATH GRSEC_DIR "/.grlearn.pid"
#define LEARN_BUFFER_SIZE (512 * 1024)
#define MAX_ENTRY_SIZE 16384
static char *writebuf;
static char *writep;
static int fd2 = -1;
extern FILE *grlearn_configin;
extern int grlearn2_configparse(void);
static void parse_learn2_config(void)
{
grlearn_configin = fopen(GR_LEARN_CONFIG_PATH, "r");
if (grlearn_configin == NULL) {
fprintf(stdout, "Unable to open %s: %s\n", GR_LEARN_CONFIG_PATH, strerror(errno));
exit(EXIT_FAILURE);
}
grlearn2_configparse();
fclose(grlearn_configin);
return;
}
void add_always_reduce(char *str)
{
unsigned int size = 0;
if (always_reduce_paths == NULL)
always_reduce_paths = calloc(2, sizeof(struct always_reduce_entry));
if (always_reduce_paths == NULL)
exit(EXIT_FAILURE);
while (always_reduce_paths[size].str)
size++;
always_reduce_paths = realloc(always_reduce_paths, (size + 2) * sizeof(struct always_reduce_entry));
if (always_reduce_paths == NULL)
exit(EXIT_FAILURE);
memset(always_reduce_paths + size, 0, 2 * sizeof(struct always_reduce_entry));
always_reduce_paths[size].str = str;
always_reduce_paths[size].len = strlen(str);
return;
}
/* handle flushing of buffer when grlearn is stopped */
void term_handler(int sig)
{
signal(sig, SIG_IGN);
if (fd2 >= 0)
write(fd2, writebuf, writep - writebuf);
exit(0);
}
int stop_daemon(void)
{
int fd;
pid_t learn_pid;
fd = open(GR_LEARN_PID_PATH, O_RDONLY);
if (fd < 0)
exit(EXIT_FAILURE);
read(fd, &learn_pid, sizeof(learn_pid));
/* send SIGTERM, will be handled */
kill(learn_pid, 15);
close(fd);
unlink(GR_LEARN_PID_PATH);
return 0;
}
int write_pid_log(pid_t pid)
{
struct stat fstat;
int fd;
pid_t learn_pid;
char pathname[PATH_MAX] = {0};
char procname[64] = {0};
if (!stat(GR_LEARN_PID_PATH, &fstat)) {
fd = open(GR_LEARN_PID_PATH, O_RDONLY);
if (fd < 0) {
fprintf(stdout, "Unable to open %s:\n"
"%s\n", GR_LEARN_PID_PATH, strerror(errno));
kill(pid, 9);
exit(EXIT_FAILURE);
}
read(fd, &learn_pid, sizeof(learn_pid));
close(fd);
unlink(GR_LEARN_PID_PATH);
snprintf(procname, sizeof(procname) - 1, "/proc/%d/exe", learn_pid);
if (readlink(procname, pathname, PATH_MAX - 1) < 0)
goto start;
if (strcmp(pathname, GRLEARN_PATH))
goto start;
fprintf(stdout, "Learning daemon possibly running already...killing process.\n");
kill(learn_pid, 15);
}
start:
fd = open(GR_LEARN_PID_PATH, O_WRONLY | O_CREAT | O_EXCL, 0600);
if (fd < 0) {
fprintf(stdout, "Unable to open %s:\n"
"%s\n", GR_LEARN_PID_PATH, strerror(errno));
kill(pid, 9);
exit(EXIT_FAILURE);
}
write(fd, &pid, sizeof(pid));
close(fd);
return 0;
}
struct cache_entry {
char *entryname;
unsigned long used;
unsigned long checked;
unsigned int len;
unsigned char taken;
} *cache[640];
static unsigned long check_count = 0;
/* maintain a cache of most recently used items */
int check_cache(char *str, unsigned int len)
{
int i;
check_count++;
for (i = 0; i < 640; i++) {
if (cache[i]->taken && cache[i]->len == len &&
!strcmp(cache[i]->entryname, str)) {
cache[i]->used++;
return 1;
}
}
return 0;
}
void insert_into_cache(char *str, unsigned int len)
{
int i;
struct cache_entry *least;
int start = random() % 639;
least = cache[start];
for (i = start + 1; i != start; i = (i + 1) % 640) {
if (!cache[i]->taken) {
cache[i]->taken = 1;
least = cache[i];
break;
}
if (cache[i]->used < least->used && (cache[i]->checked + 1280) < check_count)
least = cache[i];
}
strcpy(least->entryname, str);
least->used = 0;
least->len = len;
least->checked = check_count;
return;
}
char * rewrite_learn_entry(char *p)
{
int i;
char *tmp = p;
char *endobj;
char *next;
unsigned int len;
struct always_reduce_entry *arep;
for (i = 0; i < 8; i++) {
tmp = strchr(tmp, '\t');
if (!tmp)
return p;
tmp++;
}
/* now we have a pointer to the object name */
endobj = strchr(tmp, '\t');
if (!endobj)
return p;
*endobj = '\0';
/* now we have separated the string */
if (!strncmp(tmp, "/proc/", 6) && (*(tmp + 6) >= '1') &&
(*(tmp + 6) <= '9')) {
*endobj = '\t';
next = endobj;
while (*next++);
len = next - endobj;
memmove(tmp + 5, endobj, len);
return next;
}
if (always_reduce_paths) {
arep = always_reduce_paths;
while (arep && arep->str) {
if (!strncmp(tmp, arep->str, arep->len) &&
(*(tmp + arep->len) == '/')) {
*endobj = '\t';
next = endobj;
while (*next++);
len = next - endobj;
memmove(tmp + arep->len, endobj, len);
return next;
}
arep++;
}
}
*endobj = '\t';
return p;
}
int main(int argc, char *argv[])
{
char *buf;
char *next;
char *p;
ssize_t retval;
struct pollfd fds;
int fd;
pid_t pid;
struct sched_param schedulerparam;
unsigned int len;
int i;
if (argc != 2)
return 1;
if (!strcmp(argv[1], "-stop"))
return stop_daemon();
signal(SIGTERM, term_handler);
parse_learn2_config();
/* perform various operations to make us act in near real-time */
srandom(getpid());
mlockall(MCL_CURRENT | MCL_FUTURE);
buf = calloc(1, LEARN_BUFFER_SIZE);
if (!buf)
return 1;
writebuf = calloc(1, 4 * MAX_ENTRY_SIZE);
if (!writebuf)
return 1;
writep = writebuf;
for(i = 0; i < 640; i++) {
cache[i] = calloc(1, sizeof(struct cache_entry));
if (!cache[i])
return 1;
cache[i]->entryname = calloc(1, MAX_ENTRY_SIZE);
if (!cache[i]->entryname)
return 1;
}
setpriority(PRIO_PROCESS, 0, -20);
nice(-19);
schedulerparam.sched_priority = sched_get_priority_max(SCHED_FIFO);
sched_setscheduler(0, SCHED_FIFO, &schedulerparam);
fd = open(GRDEV_PATH, O_RDONLY);
if (fd < 0) {
fprintf(stdout, "Error opening %s:\n"
"%s\n", GRDEV_PATH, strerror(errno));
exit(EXIT_FAILURE);
}
fd2 = open(argv[1], O_WRONLY | O_APPEND | O_CREAT, 0600);
if (fd2 < 0) {
fprintf(stdout, "Error opening %s\n"
"%s\n", argv[1], strerror(errno));
exit(EXIT_FAILURE);
}
fcntl(fd, F_SETFD, FD_CLOEXEC);
fcntl(fd2, F_SETFD, FD_CLOEXEC);
pid = fork();
if (pid > 0) {
exit(EXIT_SUCCESS);
} else if (!pid) {
char b;
write_pid_log(getpid());
write(4, &b, 1);
close(0);
close(1);
close(2);
close(4);
} else {
char b;
write(4, &b, 1);
close(4);
fprintf(stdout, "Unable to fork.\n");
exit(EXIT_FAILURE);
}
fds.fd = fd;
fds.events = POLLIN;
while (poll(&fds, 1, -1) > 0) {
retval = read(fd, buf, LEARN_BUFFER_SIZE);
if (retval > 0) {
p = buf;
while (p < (buf + retval)) {
next = rewrite_learn_entry(p);
len = strlen(p);
if (!check_cache(p, len)) {
insert_into_cache(p, len);
if (((4 * MAX_ENTRY_SIZE) - (writep - writebuf)) > len) {
memcpy(writep, p, len);
writep += len;
} else {
write(fd2, writebuf, writep - writebuf);
memset(writebuf, 0, sizeof(4 * MAX_ENTRY_SIZE));
writep = writebuf;
}
}
if (next == p)
p += len + 1;
else
p = next;
}
}
}
close(fd);
close(fd2);
return 0;
}
|