1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#define f(psi,psip,uu) ((uu)*(((uu)>0.)?(psi):(psip)))
int nx;
double *u, *q;
double dx, dt;
// general advection scheme -> for Smolarkievicz && simple upstream
// Smolarkievicz method : set SC = 1.08
// simple upstream : SC = 0.0
// used globals are : u, q, dt, dx, nx
void general(int mi1, int mni1, double SC)
{
double EPS = 1.e-15;
int i,mi2,mni2,im1,ip1;
double qq[nx];
double u0,upl[nx],umi[nx],uplsn,umisn;
double t0,t1,t2,hilfx;
hilfx =.5*dt/dx;
mi2 = mi1+1; mni2 = mni1-1;
for(i = mi2; i < mni2; i++) {
im1 = i-1; ip1 = i+1; u0 = u[i];
uplsn=(u0 + u[ip1])*hilfx;
umisn=(u0 + u[im1])*hilfx;
upl[i]= fabs(uplsn) - uplsn*uplsn;
umi[i]= fabs(umisn) - umisn*umisn;
if(uplsn > 0.) {
if(umisn > 0.) {
t0 = q[i];
qq[i] = t0 + umisn*(q[im1] - t0);
} else qq[i] = q[i];
} else {
if (umisn > 0.) {
t0 = q[i];
qq[i] = t0 - uplsn*(q[ip1] - t0) + umisn*(q[im1] - t0);
} else {
t0 = q[i];
qq[i] = t0 - uplsn*(q[ip1] - t0);
}
}
}
qq[mi1]=q[mi1];
qq[mni2]=q[mni2];
for(i=mi2;i<mni2;i++) {
t0=qq[i]; t1=qq[i-1]; t2=qq[i+1];
uplsn=upl[i] * (t2 - t0) / (t0+t2+EPS);
umisn=umi[i] * (t0 - t1) / (t1+t0+EPS);
q[i] = t0 + SC*( - f(t0,t2,uplsn) + f(t1,t0,umisn) );
}
}
// general advection scheme -> for Smolarkievicz && simple upstream
// Smolarkievicz method : set SC = 1.08
// simple upstream : SC = 0.0
// used globals are : u, q, dt, dx, nx
// !! simplified : only for case u > 0 !!
// it uses zyklical boundary conditions : x[0] == x[nx]
void general2(int mi1, int mni1, double SC)
{
double EPS = 1.e-15;
int i,im1,ip1;
double qq[nx];
double u0,upl[nx],umi[nx],uplsn,umisn;
double t0,t1,t2,hilfx;
hilfx =.5*dt/dx;
for(i = mi1; i < mni1; i++) {
im1 = i-1; if (im1 < 0) im1= nx-1; // wrap around at i == 0 && i == nx-1
ip1 = i+1; if (ip1 == nx) ip1 = 0;
u0 = u[i];
uplsn=(u0 + u[ip1])*hilfx;
umisn=(u0 + u[im1])*hilfx;
upl[i]= fabs(uplsn) - uplsn*uplsn;
umi[i]= fabs(umisn) - umisn*umisn;
t0 = q[i];
qq[i] = t0 + umisn*(q[im1] - t0);
}
for(i=mi1; i< mni1; i++) {
im1 = i-1; if (im1 < 0) im1= nx-1; // wrap around at i == 0 && i == nx-1
ip1 = i+1; if (ip1 == nx) ip1 = 0;
t0=qq[i]; t1=qq[im1]; t2=qq[ip1];
uplsn=upl[i] * (t2 - t0) / (t0+t2+EPS);
umisn=umi[i] * (t0 - t1) / (t1+t0+EPS);
q[i] = t0 + SC*( - f(t0,t2,uplsn) + f(t1,t0,umisn) );
}
}
// globals : u,q,dx,dt,nx
void lax_wendroff(int x1,int x2)
{ double alpha, y,yp,ym;
double qq[nx];
int i,ip,im;
for (i= x1; i < x2; i++)
{ alpha = u[i] * dt/dx;
// zyklischer Rand
ip = (i < nx-1) ? (i+1) : 0; im = (i > 0) ? (i - 1) : (nx - 1);
y= q[i]; yp = q[ip]; ym = q[im];
qq[i] = y - alpha/2 * (yp - ym - alpha * (yp + ym - 2.0*y)) ;
}
for (i=x1; i < x2; i++) q[i] = qq[i];
}
void smolarkievicz(int i, int j) { general2(i,j,1.08); }
void simple(int i, int j) { general2(i,j,0); }
void diffusion(double diff, int x1, int x2 )
{ int i, ip, im;
double dq[nx], beta;
beta = diff * dt / (dx * dx);
for (i=x1; i<x2; i++)
{ // zyklischer Rand
ip = (i < nx-1) ? (i+1) : 0; im = (i > 0) ? (i - 1) : (nx - 1);
dq[i] = beta * (q[ip] - 2.0*q[i] + q[im]);
}
for (i=x1; i < x2; i++) q[i] += dq[i];
}
|