File: solver.c

package info (click to toggle)
grafix 1.6-5
  • links: PTS
  • area: main
  • in suites: woody
  • size: 1,156 kB
  • ctags: 1,962
  • sloc: ansic: 20,183; makefile: 186; sh: 3
file content (133 lines) | stat: -rw-r--r-- 3,405 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

#define f(psi,psip,uu) ((uu)*(((uu)>0.)?(psi):(psip)))

int nx;
double *u, *q;
double dx, dt;

// general advection scheme -> for Smolarkievicz && simple upstream 
// Smolarkievicz method : set SC = 1.08
// simple upstream : SC = 0.0
// used globals are : u, q, dt, dx, nx

void general(int mi1, int mni1, double SC) 
{
  double EPS = 1.e-15;
  int i,mi2,mni2,im1,ip1;
  double qq[nx];
  double u0,upl[nx],umi[nx],uplsn,umisn;
  double t0,t1,t2,hilfx;
  
  hilfx =.5*dt/dx;
  mi2 = mi1+1; mni2 = mni1-1;
  for(i = mi2; i < mni2; i++) {
    im1 = i-1; ip1 = i+1; u0 = u[i];
    uplsn=(u0 + u[ip1])*hilfx;
    umisn=(u0 + u[im1])*hilfx;

    upl[i]= fabs(uplsn) - uplsn*uplsn;
    umi[i]= fabs(umisn) - umisn*umisn;
    
    if(uplsn > 0.) {
      if(umisn > 0.) {
	
	t0 = q[i];
	qq[i] = t0 + umisn*(q[im1] - t0);
      } else qq[i] = q[i];
    } else {
      if (umisn > 0.) {
	t0 = q[i];
	qq[i] = t0 - uplsn*(q[ip1] - t0) + umisn*(q[im1] - t0);
      } else {
	t0 = q[i];
	qq[i] = t0 - uplsn*(q[ip1] - t0);
      }
    }
  }
 
  qq[mi1]=q[mi1];
  qq[mni2]=q[mni2];

  for(i=mi2;i<mni2;i++) {
    t0=qq[i]; t1=qq[i-1]; t2=qq[i+1];

    uplsn=upl[i] * (t2 - t0) / (t0+t2+EPS);
    umisn=umi[i] * (t0 - t1) / (t1+t0+EPS);
    q[i] = t0 + SC*(  - f(t0,t2,uplsn) + f(t1,t0,umisn) );
  }
}
// general advection scheme -> for Smolarkievicz && simple upstream 
// Smolarkievicz method : set SC = 1.08
// simple upstream : SC = 0.0
// used globals are : u, q, dt, dx, nx
// !! simplified : only for case u > 0 !!
// it uses zyklical boundary conditions : x[0] == x[nx]
void general2(int mi1, int mni1, double SC) 
{
  double EPS = 1.e-15;
  int i,im1,ip1;
  double qq[nx];
  double u0,upl[nx],umi[nx],uplsn,umisn;
  double t0,t1,t2,hilfx;
  
  hilfx =.5*dt/dx;

  for(i = mi1; i < mni1; i++) {
    im1 = i-1; if (im1 < 0) im1= nx-1; // wrap around at i == 0 && i == nx-1
    ip1 = i+1; if (ip1 == nx) ip1 = 0;
    u0 = u[i];
    uplsn=(u0 + u[ip1])*hilfx;
    umisn=(u0 + u[im1])*hilfx;

    upl[i]= fabs(uplsn) - uplsn*uplsn;
    umi[i]= fabs(umisn) - umisn*umisn;
    
	
    t0 = q[i];
    qq[i] = t0 + umisn*(q[im1] - t0);
  }
 
  for(i=mi1; i< mni1; i++) { 
    im1 = i-1; if (im1 < 0) im1= nx-1; // wrap around at i == 0 && i == nx-1
    ip1 = i+1; if (ip1 == nx) ip1 = 0;
  
    t0=qq[i]; t1=qq[im1]; t2=qq[ip1];

    uplsn=upl[i] * (t2 - t0) / (t0+t2+EPS);
    umisn=umi[i] * (t0 - t1) / (t1+t0+EPS);
    q[i] = t0 + SC*(  - f(t0,t2,uplsn) + f(t1,t0,umisn) );
  }
}

// globals : u,q,dx,dt,nx
void lax_wendroff(int x1,int x2)
{  double alpha, y,yp,ym;
   double qq[nx];
   int i,ip,im;
   for (i= x1; i < x2; i++)
     { alpha = u[i] * dt/dx; 
       // zyklischer Rand
       ip = (i < nx-1) ? (i+1) : 0; im = (i > 0) ? (i - 1) : (nx - 1); 
       y= q[i]; yp = q[ip];  ym = q[im];
       qq[i] = y - alpha/2 * (yp - ym - alpha * (yp + ym - 2.0*y)) ;
     }
   for (i=x1; i < x2; i++) q[i] = qq[i];
}

void smolarkievicz(int i, int j) { general2(i,j,1.08); }
void simple(int i, int j) { general2(i,j,0); }

void diffusion(double diff, int x1, int x2 ) 
{ int i, ip, im;
  double dq[nx], beta; 
  beta = diff * dt / (dx * dx);
  for (i=x1; i<x2; i++) 
    {  // zyklischer Rand
       ip = (i < nx-1) ? (i+1) : 0; im = (i > 0) ? (i - 1) : (nx - 1); 
       dq[i] = beta * (q[ip] - 2.0*q[i] + q[im]);
    }
  for (i=x1; i < x2; i++) q[i] += dq[i];
}