1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
"""
RULE GRAPH BUILDER
"""
# by Olivier R.
# License: MPL 2
import re
class DARG:
"""DIRECT ACYCLIC RULE GRAPH"""
# This code is inspired from Steve Hanov’s DAWG, 2011. (http://stevehanov.ca/blog/index.php?id=115)
def __init__ (self, lRule, sLangCode):
# Preparing DARG
self.sLangCode = sLangCode
self.nRule = len(lRule)
self.aPreviousRule = []
Node.resetNextId()
self.oRoot = Node()
self.lUncheckedNodes = [] # list of nodes that have not been checked for duplication.
self.lMinimizedNodes = {} # list of unique nodes that have been checked for duplication.
self.nNode = 0
self.nArc = 0
# build
lRule.sort()
for aRule in lRule:
self.insert(aRule)
self.finish()
self.countNodes()
self.countArcs()
# BUILD DARG
def insert (self, aRule):
"insert a new rule (tokens must be inserted in order)"
if aRule < self.aPreviousRule:
exit("# Error: tokens must be inserted in order.")
# find common prefix between word and previous word
nCommonPrefix = 0
for i in range(min(len(aRule), len(self.aPreviousRule))):
if aRule[i] != self.aPreviousRule[i]:
break
nCommonPrefix += 1
# Check the lUncheckedNodes for redundant nodes, proceeding from last
# one down to the common prefix size. Then truncate the list at that point.
self._minimize(nCommonPrefix)
# add the suffix, starting from the correct node mid-way through the graph
if not self.lUncheckedNodes:
oNode = self.oRoot
else:
oNode = self.lUncheckedNodes[-1][2]
iToken = nCommonPrefix
for sToken in aRule[nCommonPrefix:]:
oNextNode = Node()
oNode.dArcs[sToken] = oNextNode
self.lUncheckedNodes.append((oNode, sToken, oNextNode))
if iToken == (len(aRule) - 2):
oNode.bFinal = True
iToken += 1
oNode = oNextNode
oNode.bFinal = True
self.aPreviousRule = aRule
def finish (self):
"minimize unchecked nodes"
self._minimize(0)
def _minimize (self, downTo):
# proceed from the leaf up to a certain point
for i in range( len(self.lUncheckedNodes)-1, downTo-1, -1 ):
oNode, sToken, oChildNode = self.lUncheckedNodes[i]
if oChildNode in self.lMinimizedNodes:
# replace the child with the previously encountered one
oNode.dArcs[sToken] = self.lMinimizedNodes[oChildNode]
else:
# add the state to the minimized nodes.
self.lMinimizedNodes[oChildNode] = oChildNode
self.lUncheckedNodes.pop()
def countNodes (self):
"count nodes within the whole graph"
self.nNode = len(self.lMinimizedNodes)
def countArcs (self):
"count arcs within the whole graph"
self.nArc = len(self.oRoot.dArcs)
for oNode in self.lMinimizedNodes:
self.nArc += len(oNode.dArcs)
def __str__ (self):
"display informations about the rule graph"
return " > DARG: {:>10,} rules, {:>10,} nodes, {:>10,} arcs".format(self.nRule, self.nNode, self.nArc)
def createGraph (self):
"create the graph as a dictionary"
dGraph = { 0: self.oRoot.getNodeAsDict() }
for oNode in self.lMinimizedNodes:
sHashId = oNode.__hash__()
if sHashId not in dGraph:
dGraph[sHashId] = oNode.getNodeAsDict()
else:
print("Error. Double node… same id: ", sHashId)
print(str(oNode.getNodeAsDict()))
dGraph = self._rewriteKeysOfDARG(dGraph)
self._sortActions(dGraph)
self._checkRegexes(dGraph)
return dGraph
def _rewriteKeysOfDARG (self, dGraph):
"keys of DARG are long numbers (hashes): this function replace these hashes with smaller numbers (to reduce storing size)"
# create translation dictionary
dKeyTrans = {}
for i, nKey in enumerate(dGraph):
dKeyTrans[nKey] = i
# replace keys
dNewGraph = {}
for nKey, dVal in dGraph.items():
dNewGraph[dKeyTrans[nKey]] = dVal
for _, dVal in dGraph.items():
for sArc, val in dVal.items():
if isinstance(val, int):
dVal[sArc] = dKeyTrans[val]
else:
for sArc2, nKey in val.items():
val[sArc2] = dKeyTrans[nKey]
return dNewGraph
def _sortActions (self, dGraph):
"when a pattern is found, several actions may be launched, and it must be performed in a certain order"
for _, dVal in dGraph.items():
if "<rules>" in dVal:
for _, nKey in dVal["<rules>"].items():
# we change the dictionary of actions in a list of actions (values of dictionary all points to the final node)
if isinstance(dGraph[nKey], dict):
dGraph[nKey] = sorted(dGraph[nKey].keys())
def _checkRegexes (self, dGraph):
"check validity of regexes"
aRegex = set()
for _, dVal in dGraph.items():
if "<re_value>" in dVal:
for sRegex in dVal["<re_value>"]:
if sRegex not in aRegex:
self._checkRegex(sRegex)
aRegex.add(sRegex)
if "<re_morph>" in dVal:
for sRegex in dVal["<re_morph>"]:
if sRegex not in aRegex:
self._checkRegex(sRegex)
aRegex.add(sRegex)
aRegex.clear()
def _checkRegex (self, sRegex):
#print(sRegex)
if "¬" in sRegex:
sPattern, sNegPattern = sRegex.split("¬")
try:
if not sNegPattern:
print("# Warning! Empty negpattern:", sRegex)
re.compile(sPattern)
if sNegPattern != "*":
re.compile(sNegPattern)
except re.error:
print("# Error. Wrong regex:", sRegex)
exit()
else:
try:
if not sRegex:
print("# Warning! Empty pattern:", sRegex)
re.compile(sRegex)
except re.error:
print("# Error. Wrong regex:", sRegex)
exit()
class Node:
"""Node of the rule graph"""
NextId = 0
def __init__ (self):
self.i = Node.NextId
Node.NextId += 1
self.bFinal = False
self.dArcs = {} # key: arc value; value: a node
@classmethod
def resetNextId (cls):
"reset to 0 the node counter"
cls.NextId = 0
def __str__ (self):
# Caution! this function is used for hashing and comparison!
cFinal = "1" if self.bFinal else "0"
l = [cFinal]
for (key, oNode) in self.dArcs.items():
l.append(str(key))
l.append(str(oNode.i))
return "_".join(l)
def __hash__ (self):
# Used as a key in a python dictionary.
return self.__str__().__hash__()
def __eq__ (self, other):
# Used as a key in a python dictionary.
# Nodes are equivalent if they have identical arcs, and each identical arc leads to identical states.
return self.__str__() == other.__str__()
def getNodeAsDict (self):
"returns the node as a dictionary structure"
dNode = {}
dReValue = {} # regex for token values
dReMorph = {} # regex for morph
dMorph = {} # simple search in morph
dLemma = {}
dPhonet = {}
dMeta = {}
dTag = {}
dRule = {}
for sArc, oNode in self.dArcs.items():
if sArc.startswith("@") and len(sArc) > 1:
dReMorph[sArc[1:]] = oNode.__hash__()
elif sArc.startswith("$") and len(sArc) > 1:
dMorph[sArc[1:]] = oNode.__hash__()
elif sArc.startswith("~") and len(sArc) > 1:
dReValue[sArc[1:]] = oNode.__hash__()
elif sArc.startswith(">") and len(sArc) > 1:
dLemma[sArc[1:]] = oNode.__hash__()
elif sArc.startswith("%") and len(sArc) > 1:
dPhonet[sArc[1:]] = oNode.__hash__()
elif sArc.startswith("*") and len(sArc) > 1:
dMeta[sArc[1:]] = oNode.__hash__()
elif sArc.startswith("/") and len(sArc) > 1:
dTag[sArc[1:]] = oNode.__hash__()
elif sArc.startswith("##"):
dRule[sArc[1:]] = oNode.__hash__()
else:
dNode[sArc] = oNode.__hash__()
if dReValue:
dNode["<re_value>"] = dReValue
if dReMorph:
dNode["<re_morph>"] = dReMorph
if dMorph:
dNode["<morph>"] = dMorph
if dLemma:
dNode["<lemmas>"] = dLemma
if dPhonet:
dNode["<phonet>"] = dPhonet
if dTag:
dNode["<tags>"] = dTag
if dMeta:
dNode["<meta>"] = dMeta
if dRule:
dNode["<rules>"] = dRule
#if self.bFinal:
# dNode["<final>"] = 1
return dNode
|