File: str_transform.py

package info (click to toggle)
grammalecte 2.1.2%2Bds2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 70,192 kB
  • sloc: python: 17,988; javascript: 9,417; java: 4,716; xml: 144; makefile: 28; sh: 11
file content (357 lines) | stat: -rw-r--r-- 12,608 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
"""
Operations on strings:
- calculate distance between two strings
- transform strings with transformation codes
"""

import unicodedata
import re

from .char_player import distanceBetweenChars, dDistanceBetweenChars


#### N-GRAMS

def getNgrams (sWord, n=2):
    "return a list of Ngrams strings"
    return [ sWord[i:i+n]  for i in range(len(sWord)-n+1) ]



#### WORD NORMALIZATION

_xTransCharsForSpelling = str.maketrans({
    'ſ': 's',  'ffi': 'ffi',  'ffl': 'ffl',  'ff': 'ff',  'ſt': 'ft',  'fi': 'fi',  'fl': 'fl',  'st': 'st',
    "'": '’'
})

def spellingNormalization (sWord):
    "nomalization NFC and removing ligatures"
    return unicodedata.normalize("NFC", sWord.translate(_xTransCharsForSpelling))


_xTransCharsForSimplification = str.maketrans({
    'à': 'a',  'é': 'é',  'î': 'i',  'ô': 'o',  'û': 'u',  'ÿ': 'y',
    'â': 'a',  'è': 'é',  'ï': 'i',  'ö': 'o',  'ù': 'u',  'ŷ': 'y',
    'ä': 'a',  'ê': 'é',  'í': 'i',  'ó': 'o',  'ü': 'u',  'ý': 'y',
    'á': 'a',  'ë': 'é',  'ì': 'i',  'ò': 'o',  'ú': 'u',  'ỳ': 'y',
    'ā': 'a',  'ē': 'é',  'ī': 'i',  'ō': 'o',  'ū': 'u',  'ȳ': 'y',
    'ç': 'c',  'ñ': 'n',
    'œ': 'oe',  'æ': 'ae',
    'ſ': 's',  'ffi': 'ffi',  'ffl': 'ffl',  'ff': 'ff',  'ſt': 'ft',  'fi': 'fi',  'fl': 'fl',  'st': 'st',
    "⁰": "0", "¹": "1", "²": "2", "³": "3", "⁴": "4", "⁵": "5", "⁶": "6", "⁷": "7", "⁸": "8", "⁹": "9",
    "₀": "0", "₁": "1", "₂": "2", "₃": "3", "₄": "4", "₅": "5", "₆": "6", "₇": "7", "₈": "8", "₉": "9",
    "’": "", "'": "", "ʼ": "", "‘": "", "‛": "", "´": "", "`": "", "′": "", "‵": "", "՚": "", "ꞌ": "", "Ꞌ": "",
    "-": ""
})

def simplifyWord (sWord):
    "word simplication before calculating distance between words"
    sWord = sWord.lower().translate(_xTransCharsForSimplification)
    sNewWord = ""
    for i, c in enumerate(sWord, 1):
        if c != sWord[i:i+1] or (c == 'e' and sWord[i:i+2] != "ee"):  # exception for <e> to avoid confusion between crée / créai
            sNewWord += c
    return sNewWord.replace("eau", "o").replace("au", "o").replace("ai", "éi").replace("ei", "é").replace("ph", "f")


def cleanWord (sWord):
    "remove letters repeated more than 2 times"
    return re.sub("(.)\\1{2,}", '\\1\\1', sWord)


_xTransNumbersToExponent = str.maketrans({
    "0": "⁰", "1": "¹", "2": "²", "3": "³", "4": "⁴", "5": "⁵", "6": "⁶", "7": "⁷", "8": "⁸", "9": "⁹"
})

def numbersToExponent (sWord):
    "convert numeral chars to exponant chars"
    return sWord.translate(_xTransNumbersToExponent)



#### DISTANCE CALCULATIONS

def longestCommonSubstring (s1, s2):
    "longest common substring"
    # http://en.wikipedia.org/wiki/Longest_common_substring_problem
    # http://en.wikibooks.org/wiki/Algorithm_implementation/Strings/Longest_common_substring
    lMatrix = [ [0]*(1+len(s2)) for i in range(1+len(s1)) ]
    nLongest, nLongestX = 0, 0
    for x in range(1, 1+len(s1)):
        for y in range(1, 1+len(s2)):
            if s1[x-1] == s2[y-1]:
                lMatrix[x][y] = lMatrix[x-1][y-1] + 1
                if lMatrix[x][y] > nLongest:
                    nLongest = lMatrix[x][y]
                    nLongestX = x
            else:
                lMatrix[x][y] = 0
    return s1[nLongestX-nLongest : nLongestX]


def distanceDamerauLevenshtein (s1, s2):
    "distance of Damerau-Levenshtein between <s1> and <s2>"
    # https://fr.wikipedia.org/wiki/Distance_de_Damerau-Levenshtein
    d = {}
    nLen1 = len(s1)
    nLen2 = len(s2)
    for i in range(-1, nLen1+1):
        d[i, -1] = i + 1
    for j in range(-1, nLen2+1):
        d[-1, j] = j + 1
    for i in range(nLen1):
        for j in range(nLen2):
            #nCost = 0  if s1[i] == s2[j]  else 1
            nCost = distanceBetweenChars(s1[i], s2[j])
            d[i, j] = min(
                d[i-1, j]   + 1,        # Deletion
                d[i,   j-1] + 1,        # Insertion
                d[i-1, j-1] + nCost,    # Substitution
            )
            if i and j and s1[i] == s2[j-1] and s1[i-1] == s2[j]:
                d[i, j] = min(d[i, j], d[i-2, j-2] + nCost)     # Transposition
    return d[nLen1-1, nLen2-1]


def distanceJaroWinkler (sWord1, sWord2, fBoost = .666):
    "distance of Jaro-Winkler between <sWord1> and <sWord2>, returns a float"
    # https://github.com/thsig/jaro-winkler-JS
    #if (sWord1 == sWord2): return 1.0
    nLen1 = len(sWord1)
    nLen2 = len(sWord2)
    nMax = max(nLen1, nLen2)
    aFlags1 = [ None for _ in range(nMax) ]
    aFlags2 = [ None for _ in range(nMax) ]
    nSearchRange = (max(nLen1, nLen2) // 2) - 1
    nMinLen = min(nLen1, nLen2)

    # Looking only within the search range, count and flag the matched pairs.
    nCommon = 0
    yl1 = nLen2 - 1
    for i in range(nLen1):
        nLowLim = i - nSearchRange  if i >= nSearchRange  else 0
        nHiLim  = i + nSearchRange  if (i + nSearchRange) <= yl1  else yl1
        for j in range(nLowLim, nHiLim+1):
            if aFlags2[j] != 1 and sWord1[j:j+1] == sWord2[i:i+1]:
                aFlags1[j] = 1
                aFlags2[i] = 1
                nCommon += 1
                break

    # Return if no characters in common
    if nCommon == 0:
        return 0.0

    # Count the number of transpositions
    k = 0
    nTrans = 0
    for i in range(nLen1):
        if aFlags1[i] == 1:
            for j in range(k, nLen2):
                if aFlags2[j] == 1:
                    k = j + 1
                    break
            if sWord1[i] != sWord2[j]:
                nTrans += 1
    nTrans = nTrans // 2

    # Adjust for similarities in nonmatched characters
    nSimi = 0
    if nMinLen > nCommon:
        for i in range(nLen1):
            if not aFlags1[i]:
                for j in range(nLen2):
                    if not aFlags2[j]:
                        if sWord1[i] in dDistanceBetweenChars and sWord2[j] in dDistanceBetweenChars[sWord1[i]]:
                            nSimi += dDistanceBetweenChars[sWord1[i]][sWord2[j]]
                            aFlags2[j] = 2
                            break

    fSim = (nSimi / 10.0) + nCommon

    # Main weight computation
    fWeight = fSim / nLen1 + fSim / nLen2 + (nCommon - nTrans) / nCommon
    fWeight = fWeight / 3

    # Continue to boost the weight if the strings are similar
    if fWeight > fBoost:
        # Adjust for having up to the first 4 characters in common
        j = 4  if nMinLen >= 4  else nMinLen
        i = 0
        while i < j  and sWord1[i] == sWord2[i]:
            i += 1
        if i:
            fWeight += i * 0.1 * (1.0 - fWeight)
        # Adjust for long strings.
        # After agreeing beginning chars, at least two more must agree
        # and the agreeing characters must be more than half of the
        # remaining characters.
        if nMinLen > 4  and  nCommon > i + 1  and  2 * nCommon >= nMinLen + i:
            fWeight += (1 - fWeight) * ((nCommon - i - 1) / (nLen1 * nLen2 - i*2 + 2))
    return fWeight


def distanceSift4 (s1, s2, nMaxOffset=5):
    "implementation of general Sift4."
    # https://siderite.blogspot.com/2014/11/super-fast-and-accurate-string-distance.html
    if not s1:
        return len(s2)
    if not s2:
        return len(s1)
    nLen1, nLen2 = len(s1), len(s2)
    i1, i2 = 0, 0   # Cursors for each string
    nLargestCS = 0  # Largest common substring
    nLocalCS = 0    # Local common substring
    nTrans = 0      # Number of transpositions ('ab' vs 'ba')
    lOffset = []    # Offset pair array, for computing the transpositions

    while i1 < nLen1 and i2 < nLen2:
        if s1[i1] == s2[i2]:
            nLocalCS += 1
            # Check if current match is a transposition
            bTrans = False
            i = 0
            while i < len(lOffset):
                t = lOffset[i]
                if i1 <= t[0] or i2 <= t[1]:
                    bTrans = abs(i2-i1) >= abs(t[1] - t[0])
                    if bTrans:
                        nTrans += 1
                    elif not t[2]:
                        t[2] = True
                        nTrans += 1
                    break
                if i1 > t[1] and i2 > t[0]:
                    del lOffset[i]
                else:
                    i += 1
            lOffset.append([i1, i2, bTrans])
        else:
            nLargestCS += nLocalCS
            nLocalCS = 0
            if i1 != i2:
                i1 = i2 = min(i1, i2)
            for i in range(nMaxOffset):
                if i1 + i >= nLen1 and i2 + i >= nLen2:
                    break
                if i1 + i < nLen1 and s1[i1+i] == s2[i2]:
                    i1 += i - 1
                    i2 -= 1
                    break
                if i2 + i < nLen2 and s1[i1] == s2[i2+i]:
                    i2 += i - 1
                    i1 -= 1
                    break
        i1 += 1
        i2 += 1
        if i1 >= nLen1 or i2 >= nLen2:
            nLargestCS += nLocalCS
            nLocalCS = 0
            i1 = i2 = min(i1, i2)
    nLargestCS += nLocalCS
    return round(max(nLen1, nLen2) - nLargestCS + nTrans)


def showDistance (s1, s2):
    "display Damerau-Levenshtein distance and Sift4 distance between <s1> and <s2>"
    print("Jaro-Winkler: " + s1 + "/" + s2 + " = " + distanceJaroWinkler(s1, s2))
    print("Damerau-Levenshtein: " + s1 + "/" + s2 + " = " + distanceDamerauLevenshtein(s1, s2))
    print("Sift4:" + s1 + "/" + s2 + " = " + distanceSift4(s1, s2))




#### STEMMING OPERATIONS

## No stemming

def noStemming (sFlex, sStem):
    "return <sStem>"
    return sStem

def rebuildWord (sFlex, sCode1, sCode2):
    """ Change <sFlex> with codes (each inserts a char at a defined possition).
        <I forgot what purpose it has…>
    """
    if sCode1 == "_":
        return sFlex
    n, c = sCode1.split(":")
    sFlex = sFlex[:n] + c + sFlex[n:]
    if sCode2 == "_":
        return sFlex
    n, c = sCode2.split(":")
    return sFlex[:n] + c + sFlex[n:]


## Define affixes for stemming

# Note: 48 is the ASCII code for "0"


# Suffix only
def defineSuffixCode (sFlex, sStem):
    """ Returns a string defining how to get stem from flexion
            "n(sfx)"
        with n: a char with numeric meaning, "0" = 0, "1" = 1, ... ":" = 10, etc. (See ASCII table.) Says how many letters to strip from flexion.
             sfx [optional]: string to add on flexion
        Examples:
            "0": strips nothing, adds nothing
            "1er": strips 1 letter, adds "er"
            "2": strips 2 letters, adds nothing
    """
    if sFlex == sStem:
        return "0"
    jSfx = 0
    for i in range(min(len(sFlex), len(sStem))):
        if sFlex[i] != sStem[i]:
            break
        jSfx += 1
    return chr(len(sFlex)-jSfx+48) + sStem[jSfx:]


def changeWordWithSuffixCode (sWord, sSfxCode):
    "apply transformation code <sSfxCode> on <sWord> and return the result string"
    if sSfxCode == "0":
        return sWord
    return sWord[:-(ord(sSfxCode[0])-48)] + sSfxCode[1:]  if sSfxCode[0] != '0'  else sWord + sSfxCode[1:]


# Prefix and suffix

def defineAffixCode (sFlex, sStem):
    """ Returns a string defining how to get stem from flexion. Examples:
            "0" if stem = flexion
            "stem" if no common substring
            "n(pfx)/m(sfx)"
        with n and m: chars with numeric meaning, "0" = 0, "1" = 1, ... ":" = 10, etc. (See ASCII table.) Says how many letters to strip from flexion.
            pfx [optional]: string to add before the flexion
            sfx [optional]: string to add after the flexion
    """
    if sFlex == sStem:
        return "0"
    # is stem a substring of flexion?
    n = sFlex.find(sStem)
    if n >= 0:
        return "{}/{}".format(chr(n+48), chr(len(sFlex)-(len(sStem)+n)+48))
    # no, so we are looking for common substring
    sSubs = longestCommonSubstring(sFlex, sStem)
    if len(sSubs) > 1:
        iPos = sStem.find(sSubs)
        sPfx = sStem[:iPos]
        sSfx = sStem[iPos+len(sSubs):]
        n = sFlex.find(sSubs)
        m = len(sFlex) - (len(sSubs)+n)
        return chr(n+48) + sPfx + "/" + chr(m+48) + sSfx
    return sStem


def changeWordWithAffixCode (sWord, sAffCode):
    "apply transformation code <sAffCode> on <sWord> and return the result string"
    if sAffCode == "0":
        return sWord
    if '/' not in sAffCode:
        return sAffCode
    sPfxCode, sSfxCode = sAffCode.split('/')
    sWord = sPfxCode[1:] + sWord[(ord(sPfxCode[0])-48):]
    return sWord[:-(ord(sSfxCode[0])-48)] + sSfxCode[1:]  if sSfxCode[0] != '0'  else sWord + sSfxCode[1:]