1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Gramps - a GTK+/GNOME based genealogy program
#
# Copyright (C) 2007-2009 B. Malengier
# Copyright (C) 2009 Swoon on bug tracker
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# $Id: PlaceUtils.py 18361 2011-10-23 03:13:50Z paul-franklin $
#-------------------------------------------------------------------------
#
# Standard python modules
#
#-------------------------------------------------------------------------
from gen.ggettext import gettext as _
import math
#-------------------------------------------------------------------------
#
# GRAMPS modules
#
#-------------------------------------------------------------------------
#-------------------------------------------------------------------------
#
# begin localisation part
#
#-------------------------------------------------------------------------
# translation of N/S/E/W, make sure translator understands
degrees = "1"
North = _("%(north_latitude)s N") % {'north_latitude' : degrees}
South = _("%(south_latitude)s S") % {'south_latitude' : degrees}
East = _("%(east_longitude)s E") % {'east_longitude' : degrees}
West = _("%(west_longitude)s W") % {'west_longitude' : degrees}
# extract letters we really need
North = North.replace("1"," ").strip()
South = South.replace("1"," ").strip()
East = East.replace("1"," ").strip()
West = West.replace("1"," ").strip()
# build dictionary with translation en to local language
translate_en_loc = {}
translate_en_loc['N'] = North
translate_en_loc['S'] = South
translate_en_loc['E'] = East
translate_en_loc['W'] = West
# keep translation only if it does not conflict with english
if 'N' == South or 'S' == North or 'E' == West or 'W' == East:
translate_en_loc['N'] = 'N'
translate_en_loc['S'] = 'S'
translate_en_loc['E'] = 'E'
translate_en_loc['W'] = 'W'
# end localisation part
#------------------
#
# helper functions
#
#------------------
def __convert_structure_to_float(sign, degs, mins=0, secs=0.0) :
"""helper function which converts a structure to a nice
representation
"""
v = float(degs)
if mins is not None:
v += float(mins) / 60.
if secs is not None:
v += secs / 3600.
return -v if sign == "-" else v
def __convert_using_float_repr(stringValue):
""" helper function that tries to convert the string using the float
representation
"""
try :
v = float(stringValue)
return v
except ValueError :
return None;
def __convert_using_colon_repr(stringValue):
""" helper function that tries to convert the string using the colon
representation
"""
if stringValue.find(r':') == -1 :
return None
l = stringValue.split(':')
if len(l) < 2 or len(l) > 3:
return None
l[0]=l[0].strip()
# if no characters before ':' nothing useful is input!
if len(l[0]) == 0:
return None
if l[0][0] == '-':
sign = '-'
l[0]=l[0][1:]
else:
sign = '+'
try:
degs = int(l[0])
if degs < 0:
return None
except:
return None
try:
mins = int(l[1])
if mins < 0 or mins >= 60:
return None
except:
return None
secs=0.
if len(l) == 3:
try:
secs = float(l[2])
if secs < 0. or secs >= 60.:
return None
except:
return None
return __convert_structure_to_float(sign, degs, mins, secs)
def __convert_using_classic_repr(stringValue, typedeg):
"""helper function that tries to convert the string using the colon
representation
"""
if stringValue.find(r'_') != -1:
return None # not a valid lat or lon
#exchange some characters
stringValue = stringValue.replace(u'°',r'_')
#allow to input ° as #, UTF-8 code c2b00a
stringValue = stringValue.replace(u'º',r'_')
#allow to input º as #, UTF-8 code c2ba0a
stringValue = stringValue.replace(r'#',r'_')
#allow to input " as ''
stringValue = stringValue.replace(r"''",r'"')
#allow some special unicode symbols
stringValue = stringValue.replace(u'\u2033',r'"')
stringValue = stringValue.replace(u'\u2032',r"'")
#ignore spaces, a regex with \s* would be better here...
stringValue = stringValue.replace(r' ', r'')
stringValue = stringValue.replace(r'\t', r'')
# get the degrees, must be present
if stringValue.find(r'_') == -1:
return None
l = stringValue.split(r'_')
if len(l) != 2:
return None
try:
degs = int(l[0]) #degrees must be integer value
if degs < 0:
return None
except:
return None
# next: minutes might be present once
l2 = l[1].split(r"'")
l3 = l2
mins = 0
# See if minutes might be decimal?
# Then no seconds is supposed to be given
if l2[0].find(r'.') > 0:
# Split in integer and decimal parts
l4 = l2[0].split(r".")
# Set integer minutes
l2[0] = l4[0]
# Convert the decimal part of minutes to seconds
try:
lsecs=float('0.' + l4[1]) * 60.0
# Set the seconds followed by direction letter N/S/W/E
l2[1] = str(lsecs) + '"' + l2[1]
except:
return None
if len(l2) > 2:
return None
if len(l2) == 2:
l3 = [l2[1],]
try:
mins = int(l2[0]) #minutes must be integer value
if mins < 0 or mins >= 60:
return None
except:
return None
# next: seconds might be present once
l3 = l3[0].split(r'"')
last = l3[0]
secs = 0.
if len(l3) > 2:
return None
if len(l3) == 2:
last = l3[1]
try:
secs = float(l3[0])
if secs < 0. or secs >= 60.:
return None
except:
return None
# last entry should be the direction
if typedeg == 'lat':
if last == 'N':
sign = '+'
elif last == 'S':
sign = '-'
else:
return None
elif typedeg == 'lon':
if last == 'E':
sign = '+'
elif last == 'W':
sign = '-'
else:
return None
else:
return None
return __convert_structure_to_float(sign, degs, mins, secs)
def __convert_using_modgedcom_repr(val, typedeg):
""" helper function that tries to convert the string using the
modified GEDCOM representation where direction [NSEW] is appended
instead of prepended. This particular representation is the result
of value normalization done on values passed to this function
"""
if typedeg == 'lat':
pos = val.find('N')
if pos >= 0:
stringValue = val[:pos]
else:
pos = val.find('S')
if pos >= 0:
stringValue = '-' + val[:pos]
else:
return None
else:
pos = val.find('E')
if pos >= 0:
stringValue = val[:pos]
else:
pos = val.find('W')
if pos >= 0:
stringValue = '-' + val[:pos]
else:
return None
try :
v = float(stringValue)
return v
except ValueError :
return None;
def __convert_float_val(val, typedeg = "lat"):
# function converting input to float, recognizing decimal input, or
# degree notation input. Only english input
# There is no check on maximum/minimum of degree
# In case of degree minutes seconds direction input,
# it is checked that degree >0, 0<= minutes <= 60,
# 0<= seconds <= 60, direction is in the directions dic.
#change , to . so that , input works in non , localization
#this is no problem, as a number like 100,000.20 cannot appear in
#lat/lon
#change XX,YY into XX.YY
if val.find(r'.') == -1 :
val = val.replace(u',', u'.')
# format: XX.YYYY
v = __convert_using_float_repr(val)
if v is not None:
return v
# format: XX:YY:ZZ
v = __convert_using_colon_repr(val)
if v is not None :
return v
# format: XX° YY' ZZ" [NSWE]
v = __convert_using_classic_repr(val, typedeg)
if v is not None :
return v
# format XX.YYYY[NSWE]
v = __convert_using_modgedcom_repr(val, typedeg)
if v is not None :
return v
# no format succeeded
return None
#-------------------------------------------------------------------------
#
# conversion function
#
#-------------------------------------------------------------------------
def conv_lat_lon(latitude, longitude, format="D.D4"):
"""
Convert given string latitude and longitude to a required format.
Possible formats:
'D.D4' : degree notation, 4 decimals
eg +12.0154 , -124.3647
'D.D8' : degree notation, 8 decimals (precision like ISO-DMS)
eg +12.01543265 , -124.36473268
'DEG' : degree, minutes, seconds notation
eg 50°52'21.92''N , 124°52'21.92''E ° has UTF-8 code c2b00a
or N50º52'21.92" , E14º52'21.92" º has UTF-8 code c2ba0a
or N50º52.3456' , E14º52.9876' ; decimal minutes, no seconds
'DEG-:' : degree, minutes, seconds notation with :
eg -50:52:21.92 , 124:52:21.92
'ISO-D' : ISO 6709 degree notation i.e. ±DD.DDDD±DDD.DDDD
'ISO-DM' : ISO 6709 degree, minutes notation
i.e. ±DDMM.MMM±DDDMM.MMM
'ISO-DMS' : ISO 6709 degree, minutes, seconds notation
i.e. ±DDMMSS.SS±DDDMMSS.SS
'RT90' : Output format for the Swedish coordinate system RT90
Return value: a tuple of 2 strings, or a string (for ISO formats)
If conversion fails: returns: (None, None) or None (for ISO formats)
Some generalities:
-90 <= latitude <= +90 with +00 the equator
-180 <= longitude < +180 with +000 prime meridian
and -180 180th meridian
"""
# we start the function changing latitude/longitude in english
if latitude.find('N') == -1 and latitude.find('S') == -1:
# entry is not in english, convert to english
latitude = latitude.replace(translate_en_loc['N'],'N')
latitude = latitude.replace(translate_en_loc['S'],'S')
if longitude.find('E') == -1 and longitude.find('W') == -1:
# entry is not in english, convert to english
longitude = longitude.replace(translate_en_loc['W'],'W')
longitude = longitude.replace(translate_en_loc['E'],'E')
# take away leading spaces
latitude = latitude.lstrip()
longitude = longitude.lstrip()
# check if first character is alpha i.e. N or S, put it last
if len(latitude) > 1 and latitude[0].isalpha():
latitude = latitude[1:] + latitude[0]
# check if first character is alpha i.e. E or W, put it last
if len(longitude) > 1 and longitude[0].isalpha():
longitude = longitude[1:] + longitude[0]
# convert to float
lat_float = __convert_float_val(latitude, 'lat')
lon_float = __convert_float_val(longitude, 'lon')
# give output (localized if needed)
if lat_float is None or lon_float is None:
if format == "ISO-D" or format == "ISO-DM" or format == "ISO-DMS":
return None
else:
return (None, None)
if lat_float > 90. or lat_float < -90. \
or lon_float >= 180. or lon_float < -180.:
if format == "ISO-D" or format == "ISO-DM" or format == "ISO-DMS":
return None
else:
return (None, None)
if format == "D.D4":
# correct possible roundoff error
str_lon = "%.4f" % (lon_float)
if str_lon == "180.0000":
str_lon ="-180.0000"
return ("%.4f" % lat_float , str_lon)
if format == "D.D8" or format == "RT90":
# correct possible roundoff error
str_lon = "%.8f" % (lon_float)
if str_lon == "180.00000000":
str_lon ="-180.00000000"
if format == "RT90":
tx = __conv_WGS84_SWED_RT90(lat_float, lon_float)
return ("%i" % tx[0], "%i" % tx[1])
else:
return ("%.8f" % lat_float , str_lon)
if format == "GEDCOM":
# The 5.5.1 spec is inconsistent. Length is supposedly 5 to 8 chars,
# but the sample values are longer, using up to 6 fraction digits.
# As a compromise, we will produce up to 6 fraction digits, but only
# if necessary
# correct possible roundoff error
if lon_float >= 0:
str_lon = "%.6f" % (lon_float)
if str_lon == "180.000000":
str_lon ="W180.000000"
else:
str_lon = "E" + str_lon
else:
str_lon = "W" + "%.6f" % (-lon_float)
str_lon = str_lon[:-5] + str_lon[-5:].rstrip("0")
str_lat = ("%s%.6f" % (("N", lat_float) if lat_float >= 0 else ("S", -lat_float)))
str_lat = str_lat[:-5] + str_lat[-5:].rstrip("0")
return (str_lat, str_lon)
deg_lat = int(lat_float)
deg_lon = int(lon_float)
min_lat = int(60. * (lat_float - float(deg_lat) ))
min_lon = int(60. * (lon_float - float(deg_lon) ))
sec_lat = 3600. * (lat_float - float(deg_lat) - float(min_lat) / 60.)
sec_lon = 3600. * (lon_float - float(deg_lon) - float(min_lon) / 60.)
# dump minus sign on all, store minus sign. Carefull: int(-0.8)=0 !!
if (deg_lat) < 0:
deg_lat = -1 * deg_lat
if (min_lat) < 0:
min_lat = -1 * min_lat
if (sec_lat) < 0.:
sec_lat = -1. * sec_lat
if (deg_lon) < 0:
deg_lon = -1 * deg_lon
if (min_lon) < 0:
min_lon = -1 * min_lon
if (sec_lon) < 0.:
sec_lon = -1. * sec_lon
# keep sign as -1* 0 = +0, so 0°2'S is given correct sign in ISO
sign_lat = "+"
dir_lat = ""
if lat_float >= 0.:
dir_lat = translate_en_loc['N']
else:
dir_lat = translate_en_loc['S']
sign_lat= "-"
sign_lon= "+"
dir_lon = ""
if lon_float >= 0.:
dir_lon = translate_en_loc['E']
else:
dir_lon = translate_en_loc['W']
sign_lon= "-"
if format == "DEG":
str_lat = ("%d°%02d'%05.2f\"" % (deg_lat, min_lat, sec_lat)) + dir_lat
str_lon = ("%d°%02d'%05.2f\"" % (deg_lon, min_lon, sec_lon)) + dir_lon
# correct possible roundoff error in seconds
if str_lat[-6-len(dir_lat)] == '6':
if min_lat == 59:
str_lat = ("%d°%02d'%05.2f\"" % (deg_lat+1, 0, 0.)) + dir_lat
else:
str_lat = ("%d°%02d'%05.2f\"" % (deg_lat, min_lat+1, 0.)) \
+ dir_lat
if str_lon[-6-len(dir_lon)] == '6':
if min_lon == 59:
if deg_lon == 179 and sign_lon == "+":
str_lon = ("%d°%02d'%05.2f\"" % (180, 0, 0.)) \
+ translate_en_loc['W']
else:
str_lon = ("%d°%02d'%05.2f\"" % (deg_lon+1, 0, 0.)) \
+ dir_lon
else:
str_lon = ("%d°%02d'%05.2f\"" % (deg_lon, min_lon+1, 0.)) \
+ dir_lon
return (str_lat, str_lon)
if format == "DEG-:":
if sign_lat=="+":
sign_lat = ""
sign_lon_h = sign_lon
if sign_lon=="+":
sign_lon_h = ""
str_lat = sign_lat + ("%d:%02d:%05.2f" % (deg_lat, min_lat, sec_lat))
str_lon = sign_lon_h + ("%d:%02d:%05.2f" % (deg_lon, min_lon, sec_lon))
# correct possible roundoff error in seconds
if str_lat[-5] == '6':
if min_lat == 59:
str_lat = sign_lat + ("%d:%02d:%05.2f" % (deg_lat+1, 0, 0.))
else:
str_lat = sign_lat + \
("%d:%02d:%05.2f" % (deg_lat, min_lat+1, 0.))
if str_lon[-5] == '6':
if min_lon == 59:
if deg_lon == 179 and sign_lon == "+":
str_lon = '-' + ("%d:%02d:%05.2f" % (180, 0, 0.))
else:
str_lon = sign_lon_h + \
("%d:%02d:%05.2f" % (deg_lon+1, 0, 0.))
else:
str_lon = sign_lon_h + \
("%d:%02d:%05.2f" % (deg_lon, min_lon+1, 0.))
return (str_lat, str_lon)
if format == "ISO-D": # ±DD.DDDD±DDD.DDDD
str_lon = "%+09.4f" % (lon_float)
# correct possible roundoff error
if str_lon == "+180.0000":
str_lon = "-180.0000"
return ("%+08.4f" % lat_float) + str_lon
if format == "ISO-DM": # ±DDMM.MMM±DDDMM.MMM
min_fl_lat = float(min_lat)+ sec_lat/60.
min_fl_lon = float(min_lon)+ sec_lon/60.
str_lat = sign_lat + ("%02d%06.3f" % (deg_lat, min_fl_lat))
str_lon = sign_lon + ("%03d%06.3f" % (deg_lon, min_fl_lon))
# correct possible roundoff error
if str_lat[3:] == "60.000":
str_lat = sign_lat + ("%02d%06.3f" % (deg_lat+1, 0.))
if str_lon[4:] == "60.000":
if deg_lon == 179 and sign_lon == "+":
str_lon = "-" + ("%03d%06.3f" % (180, 0.))
else:
str_lon = sign_lon + ("%03d%06.3f" % (deg_lon+1, 0.))
return str_lat + str_lon
if format == "ISO-DMS": # ±DDMMSS.SS±DDDMMSS.SS
str_lat = sign_lat + ("%02d%02d%06.3f" % (deg_lat, min_lat, sec_lat))
str_lon = sign_lon + ("%03d%02d%06.3f" % (deg_lon, min_lon, sec_lon))
# correct possible roundoff error
if str_lat[5:] == "60.000":
if min_lat == 59:
str_lat = sign_lat + ("%02d%02d%06.3f" % (deg_lat+1, 0, 0.))
else:
str_lat = sign_lat + \
("%02d%02d%06.3f" % (deg_lat, min_lat +1, 0.))
if str_lon[6:] == "60.000":
if min_lon == 59:
if deg_lon == 179 and sign_lon == "+":
str_lon = "-" + ("%03d%02d%06.3f" % (180, 0, 0))
else:
str_lon = sign_lon + \
("%03d%02d%06.3f" % (deg_lon+1, 0, 0.))
else:
str_lon = sign_lon + \
("%03d%02d%06.3f" % (deg_lon, min_lon+1, 0.))
return str_lat + str_lon
def atanh(x):
"""arctangent hyperbolicus"""
return 1.0/2.0*math.log((1.0 + x)/(1.0 -x))
def __conv_WGS84_SWED_RT90(lat, lon):
"""
Input is lat and lon as two float numbers
Output is X and Y coordinates in RT90
as a tuple of float numbers
The code below converts to/from the Swedish RT90 koordinate
system. The converion functions use "Gauss Conformal Projection
(Transverse Marcator)" Krüger Formulas.
The constanst are for the Swedish RT90-system.
With other constants the conversion should be useful for
other geographical areas.
"""
# Some constants used for conversion to/from Swedish RT90
f = 1.0/298.257222101
e2 = f*(2.0-f)
n = f/(2.0-f)
L0 = math.radians(15.8062845294) # 15 deg 48 min 22.624306 sec
k0 = 1.00000561024
a = 6378137.0 # meter
at = a/(1.0+n)*(1.0+ 1.0/4.0* pow(n,2)+1.0/64.0*pow(n,4))
FN = -667.711 # m
FE = 1500064.274 # m
#the conversion
lat_rad = math.radians(lat)
lon_rad = math.radians(lon)
A = e2
B = 1.0/6.0*(5.0*pow(e2,2) - pow(e2,3))
C = 1.0/120.0*(104.0*pow(e2,3) - 45.0*pow(e2,4))
D = 1.0/1260.0*(1237.0*pow(e2,4))
DL = lon_rad - L0
E = A + B*pow(math.sin(lat_rad),2) + \
C*pow(math.sin(lat_rad),4) + \
D*pow(math.sin(lat_rad),6)
psi = lat_rad - math.sin(lat_rad)*math.cos(lat_rad)*E
xi = math.atan2(math.tan(psi),math.cos(DL))
eta = atanh(math.cos(psi)*math.sin(DL))
B1 = 1.0/2.0*n - 2.0/3.0*pow(n,2) + 5.0/16.0*pow(n,3) + 41.0/180.0*pow(n,4)
B2 = 13.0/48.0*pow(n,2) - 3.0/5.0*pow(n,3) + 557.0/1440.0*pow(n,4)
B3 = 61.0/240.0*pow(n,3) - 103.0/140.0*pow(n,4)
B4 = 49561.0/161280.0*pow(n,4)
X = xi + B1*math.sin(2.0*xi)*math.cosh(2.0*eta) + \
B2*math.sin(4.0*xi)*math.cosh(4.0*eta) + \
B3*math.sin(6.0*xi)*math.cosh(6.0*eta) + \
B4*math.sin(8.0*xi)*math.cosh(8.0*eta)
Y = eta + B1*math.cos(2.0*xi)*math.sinh(2.0*eta) + \
B2*math.cos(4.0*xi)*math.sinh(4.0*eta) + \
B3*math.cos(6.0*xi)*math.sinh(6.0*eta) + \
B4*math.cos(8.0*xi)*math.sinh(8.0*eta)
X = X*k0*at + FN
Y = Y*k0*at + FE
return (X, Y)
def __conv_SWED_RT90_WGS84(X, Y):
"""
Input is X and Y coordinates in RT90 as float
Output is lat and long in degrees, float as tuple
"""
# Some constants used for conversion to/from Swedish RT90
f = 1.0/298.257222101
e2 = f*(2.0-f)
n = f/(2.0-f)
L0 = math.radians(15.8062845294) # 15 deg 48 min 22.624306 sec
k0 = 1.00000561024
a = 6378137.0 # meter
at = a/(1.0+n)*(1.0+ 1.0/4.0* pow(n,2)+1.0/64.0*pow(n,4))
FN = -667.711 # m
FE = 1500064.274 # m
xi = (X - FN)/(k0*at)
eta = (Y - FE)/(k0*at)
D1 = 1.0/2.0*n - 2.0/3.0*pow(n,2) + 37.0/96.0*pow(n,3) - 1.0/360.0*pow(n,4)
D2 = 1.0/48.0*pow(n,2) + 1.0/15.0*pow(n,3) - 437.0/1440.0*pow(n,4)
D3 = 17.0/480.0*pow(n,3) - 37.0/840.0*pow(n,4)
D4 = 4397.0/161280.0*pow(n,4)
xip = xi - D1*math.sin(2.0*xi)*math.cosh(2.0*eta) - \
D2*math.sin(4.0*xi)*math.cosh(4.0*eta) - \
D3*math.sin(6.0*xi)*math.cosh(6.0*eta) - \
D4*math.sin(8.0*xi)*math.cosh(8.0*eta)
etap = eta - D1*math.cos(2.0*xi)*math.sinh(2.0*eta) - \
D2*math.cos(4.0*xi)*math.sinh(4.0*eta) - \
D3*math.cos(6.0*xi)*math.sinh(6.0*eta) - \
D4*math.cos(8.0*xi)*math.sinh(8.0*eta)
psi = math.asin(math.sin(xip)/math.cosh(etap))
DL = math.atan2(math.sinh(etap),math.cos(xip))
LON = L0 + DL
A = e2 + pow(e2,2) + pow(e2,3) + pow(e2,4)
B = -1.0/6.0*(7.0*pow(e2,2) + 17*pow(e2,3) + 30*pow(e2,4))
C = 1.0/120.0*(224.0*pow(e2,3) + 889.0*pow(e2,4))
D = 1.0/1260.0*(4279.0*pow(e2,4))
E = A + B*pow(math.sin(psi),2) + \
C*pow(math.sin(psi),4) + \
D*pow(math.sin(psi),6)
LAT = psi + math.sin(psi)*math.cos(psi)*E
LAT = math.degrees(LAT)
LON = math.degrees(LON)
return LAT, LON
#-------------------------------------------------------------------------
#
# For Testing the convert function in this module, apply it as a script:
# ==> in command line do "python PlaceUtils.py"
#
#-------------------------------------------------------------------------
if __name__ == '__main__':
def test_formats_success(lat1,lon1, text=''):
format0 = "D.D4"
format1 = "D.D8"
format2 = "DEG"
format3 = "DEG-:"
format4 = "ISO-D"
format5 = "ISO-DM"
format6 = "ISO-DMS"
format7 = "RT90"
format8 = "GEDCOM"
print "Testing conv_lat_lon function, "+text+':'
res1, res2 = conv_lat_lon(lat1,lon1,format0)
print lat1,lon1,"in format",format0, "is ",res1,res2
res1, res2 = conv_lat_lon(lat1,lon1,format1)
print lat1,lon1,"in format",format1, "is ",res1,res2
res1, res2 = conv_lat_lon(lat1,lon1,format2)
print lat1,lon1,"in format",format2, "is ",res1,res2
res1, res2 = conv_lat_lon(lat1,lon1,format3)
print lat1,lon1,"in format",format3, "is ",res1,res2
res = conv_lat_lon(lat1,lon1,format4)
print lat1,lon1,"in format",format4, "is ",res
res = conv_lat_lon(lat1,lon1,format5)
print lat1,lon1,"in format",format5, "is",res
res = conv_lat_lon(lat1,lon1,format6)
print lat1,lon1,"in format",format6, "is",res
res1, res2 = conv_lat_lon(lat1,lon1,format7)
print lat1,lon1,"in format",format7, "is",res1,res2,"\n"
res1, res2 = conv_lat_lon(lat1,lon1,format8)
print lat1,lon1,"in format",format8, "is",res1,res2,"\n"
def test_formats_fail(lat1,lon1,text=''):
print "This test should make conv_lat_lon function fail, "+text+":"
res1, res2 = conv_lat_lon(lat1,lon1)
print lat1,lon1," fails to convert, result=", res1,res2,"\n"
def test_RT90_conversion():
"""
a given lat/lon is converted to RT90 and back as a test:
"""
la = 59.0 + 40.0/60. + 9.09/3600.0
lo = 12.0 + 58.0/60.0 + 57.74/3600.0
x, y = __conv_WGS84_SWED_RT90(la, lo)
lanew, lonew = __conv_SWED_RT90_WGS84(x,y)
assert math.fabs(lanew - la) < 1e-6, math.fabs(lanew - la)
assert math.fabs(lonew - lo) < 1e-6, math.fabs(lonew - lo)
lat, lon = '50.849888888888', '2.885897222222'
test_formats_success(lat,lon)
lat, lon = u' 50°50\'59.60"N', u' 2°53\'9.23"E'
test_formats_success(lat,lon)
lat, lon = ' 50 : 50 : 59.60 ', ' -2:53 : 9.23 '
test_formats_success(lat,lon)
lat, lon = ' dummy', ' 2#53 \' 9.23 " E '
test_formats_fail(lat,lon)
lat, lon = ' 50:50: 59.60', ' d u m my'
test_formats_fail(lat,lon)
lat, lon = u' 50°59.60"N', u' 2°53\'E'
test_formats_success(lat,lon)
lat, lon = u' 11° 11\' 11" N, 11° 11\' 11" O', ' '
test_formats_fail(lat,lon)
# very small negative
lat, lon = '-0.00006', '-0.00006'
test_formats_success(lat,lon)
# missing direction N/S
lat, lon = u' 50°59.60"', u' 2°53\'E'
test_formats_fail(lat,lon)
# wrong direction on latitude
lat, lon = u' 50°59.60"E', u' 2°53\'N'
test_formats_fail(lat,lon)
# same as above
lat, lon = u' 50°59.99"E', u' 2°59\'59.99"N'
test_formats_fail(lat,lon)
# test precision
lat, lon = u' 50°59.99"S', u' 2°59\'59.99"E'
test_formats_success(lat,lon)
lat, lon = 'N50.849888888888', 'E2.885897222222'
test_formats_success(lat,lon)
# to large value of lat
lat, lon = '90.849888888888', '2.885897222222'
test_formats_fail(lat,lon)
# extreme values allowed
lat, lon = '90', '-180'
test_formats_success(lat,lon)
# extreme values allowed
lat, lon = u'90° 00\' 00.00" S ', u'179° 59\'59.99"W'
test_formats_success(lat,lon)
# extreme value not allowed
lat, lon = u'90° 00\' 00.00" N', u'180° 00\'00.00" E'
test_formats_fail(lat,lon)
# extreme values allowed
lat, lon = '90: 00: 00.00 ', '-179: 59:59.99'
test_formats_success(lat,lon)
# extreme value not allowed
lat, lon = u'90° 00\' 00.00" N', '180:00:00.00'
test_formats_fail(lat,lon)
# extreme values not allowed
lat, lon = '90', '180'
test_formats_fail(lat,lon)
lat, lon = u' 89°59\'60"N', u' 2°53\'W'
test_formats_fail(lat,lon)
lat, lon = u' 89°60\'00"N', u' 2°53\'W'
test_formats_fail(lat,lon)
lat, lon = u' 89.1°40\'00"N', u' 2°53\'W'
test_formats_fail(lat,lon)
lat, lon = u' 89°40\'00"N', u' 2°53.1\'W'
test_formats_fail(lat,lon)
lat, lon = '0', '0'
test_formats_success(lat,lon,
"Special 0 value, crossing 0-meridian and equator")
# small values close to equator
lat, lon = u' 1°1"N', u' 1°1\'E'
test_formats_success(lat,lon)
# roundoff
lat, lon = u' 1°59.999"N', u' 1°59.999"E'
test_formats_success(lat,lon,'Examples of round off and how it behaves')
lat, lon = u' 1°59\'59.9999"N', u' 1°59\'59.9999"E'
test_formats_success(lat,lon,'Examples of round off and how it behaves')
lat, lon = u'89°59\'59.9999"S', u'179°59\'59.9999"W'
test_formats_success(lat,lon,'Examples of round off and how it behaves')
lat, lon = u'89°59\'59.9999"N', u'179°59\'59.9999"E'
test_formats_success(lat,lon,'Examples of round off and how it behaves')
#insane number of decimals:
lat, lon = u'89°59\'59.99999999"N', u'179°59\'59.99999999"E'
test_formats_success(lat,lon,'Examples of round off and how it begaves')
#recognise '' as seconds "
lat, lon = u'89°59\'59.99\'\' N', u'179°59\'59.99\'\'E'
test_formats_success(lat,lon, "input \" as ''")
#test localisation of , and . as delimiter
lat, lon = '50.849888888888', '2,885897222222'
test_formats_success(lat,lon, 'localisation of . and , ')
lat, lon = u'89°59\'59.9999"S', u'179°59\'59,9999"W'
test_formats_success(lat,lon, 'localisation of . and , ')
lat, lon = u'89°59\'1.599,999"S', u'179°59\'59,9999"W'
test_formats_fail(lat,lon, 'localisation of . and , ')
#rest
lat, lon = '81.2', '-182.3'
test_formats_fail(lat,lon)
lat, lon = '-91.2', '-1'
test_formats_fail(lat,lon)
lat, lon = '++50:10:1', '2:1:2'
test_formats_fail(lat,lon)
lat, lon = '-50:10:1', '-+2:1:2'
test_formats_success(lat,lon)
lat, lon = '-50::1', '-2:1:2'
test_formats_fail(lat,lon)
lat, lon = '- 50 : 2 : 1 ', '-2:1:2'
test_formats_success(lat,lon)
lat, lon = '+ 50:2 : 1', '-2:1:2'
test_formats_success(lat,lon)
lat, lon = '+50:', '-2:1:2'
test_formats_fail(lat,lon)
lat, lon = '+50:1', '-2:1:2'
test_formats_success(lat,lon)
lat, lon = '+50: 0 : 1 : 1', '-2:1:2'
test_formats_fail(lat,lon)
lat, lon = u'+61° 43\' 60.00"', u'+17° 7\' 60.00"'
test_formats_fail(lat,lon)
lat, lon = u'+61° 44\' 00.00"N', u'+17° 8\' 00.00"E'
test_formats_success(lat,lon)
lat, lon = ': 0 : 1 : 1', ':1:2'
test_formats_fail(lat,lon)
lat, lon = u'N 50º52\'21.92"', u'E 124º52\'21.92"'
test_formats_success(lat,lon, 'New format with N/E first and another º - character')
lat, lon = u'S 50º52\'21.92"', u'W 124º52\'21.92"'
test_formats_success(lat,lon, 'New format with S/W first and another º - character')
test_RT90_conversion()
|