File: BufferSurface.vala

package info (click to toggle)
granite 6.2.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,748 kB
  • sloc: python: 10; makefile: 8
file content (708 lines) | stat: -rw-r--r-- 25,477 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
 * Copyright 2019 elementary, Inc. (https://elementary.io)
 * Copyright 2011-2013 Robert Dyer
 * Copyright 2011-2013 Rico Tzschichholz <ricotz@ubuntu.com>
 * SPDX-License-Identifier: LGPL-3.0-or-later
 */

using Cairo;
using Posix;

namespace Granite.Drawing {
    /**
     * A buffer containing an internal Cairo-usable surface and context, designed
     * for usage with large, rarely updated draw operations.
     */
    public class BufferSurface : GLib.Object {
        private Surface _surface;
        /**
         * The {@link Cairo.Surface} which will store the results of all drawing operations
         * made with {@link Granite.Drawing.BufferSurface.context}.
         */
        public Surface surface {
            get {
                if (_surface == null) {
                    _surface = new ImageSurface (Format.ARGB32, width, height);
                }

                return _surface;
            }
            private set { _surface = value; }
        }

        /**
         * The width of the {@link Granite.Drawing.BufferSurface}, in pixels.
         */
        public int width { get; private set; }
        /**
         * The height of the BufferSurface, in pixels.
         */
        public int height { get; private set; }

        private Context _context;
        /**
         * The {@link Cairo.Context} for the internal surface. All drawing operations done on this
         * {@link Granite.Drawing.BufferSurface} should use this context.
         */
        public Cairo.Context context {
            get {
                if (_context == null) {
                    _context = new Cairo.Context (surface);
                }

                return _context;
            }
        }

        /**
         * Constructs a new, empty {@link Granite.Drawing.BufferSurface} with the supplied dimensions.
         *
         * @param width the width of {@link Granite.Drawing.BufferSurface}, in pixels
         * @param height the height of the {@link Granite.Drawing.BufferSurface}, in pixels
         */
        public BufferSurface (int width, int height) requires (width >= 0 && height >= 0) {
            this.width = width;
            this.height = height;
        }

        /**
         * Constructs a new, empty {@link Granite.Drawing.BufferSurface} with the supplied dimensions, using
         * the supplied {@link Cairo.Surface} as a model.
         *
         * @param width the width of the new {@link Granite.Drawing.BufferSurface}, in pixels
         * @param height the height of the new {@link Granite.Drawing.BufferSurface}, in pixels
         * @param model the {@link Cairo.Surface} to use as a model for the internal {@link Cairo.Surface}
         */
        public BufferSurface.with_surface (int width, int height, Surface model) requires (model != null) {
            this (width, height);
            surface = new Surface.similar (model, Content.COLOR_ALPHA, width, height);
        }

        /**
         * Constructs a new, empty {@link Granite.Drawing.BufferSurface} with the supplied dimensions, using
         * the supplied {@link Granite.Drawing.BufferSurface} as a model.
         *
         * @param width the width of the new {@link Granite.Drawing.BufferSurface}, in pixels
         * @param height the height of the new {@link Granite.Drawing.BufferSurface}, in pixels
         * @param model the {@link Granite.Drawing.BufferSurface} to use as a model for the internal {@link Cairo.Surface}
         */
        public BufferSurface.with_buffer_surface (int width, int height, BufferSurface model) requires (model != null) {
            this (width, height);
            surface = new Surface.similar (model.surface, Content.COLOR_ALPHA, width, height);
        }

        /**
         * Clears the internal {@link Cairo.Surface}, making all pixels fully transparent.
         */
        public void clear () {
            context.save ();

            _context.set_source_rgba (0, 0, 0, 0);
            _context.set_operator (Operator.SOURCE);
            _context.paint ();

            _context.restore ();
        }

        /**
         * Creates a {@link Gdk.Pixbuf} from internal {@link Cairo.Surface}.
         *
         * @return the {@link Gdk.Pixbuf}
         */
        public Gdk.Pixbuf load_to_pixbuf () {
            var image_surface = new ImageSurface (Format.ARGB32, width, height);
            var cr = new Cairo.Context (image_surface);

            cr.set_operator (Operator.SOURCE);
            cr.set_source_surface (surface, 0, 0);
            cr.paint ();

            var width = image_surface.get_width ();
            var height = image_surface.get_height ();

            var pb = new Gdk.Pixbuf (Gdk.Colorspace.RGB, true, 8, width, height);
            pb.fill (0x00000000);

            uint8 *data = image_surface.get_data ();
            uint8 *pixels = pb.get_pixels ();
            var length = width * height;

            if (image_surface.get_format () == Format.ARGB32) {
                for (var i = 0; i < length; i++) {
                    // if alpha is 0 set nothing
                    if (data[3] > 0) {
                        pixels[0] = (uint8) (data[2] * 255 / data[3]);
                        pixels[1] = (uint8) (data[1] * 255 / data[3]);
                        pixels[2] = (uint8) (data[0] * 255 / data[3]);
                        pixels[3] = data[3];
                    }

                    pixels += 4;
                    data += 4;
                }
            } else if (image_surface.get_format () == Format.RGB24) {
                for (var i = 0; i < length; i++) {
                    pixels[0] = data[2];
                    pixels[1] = data[1];
                    pixels[2] = data[0];
                    pixels[3] = data[3];

                    pixels += 4;
                    data += 4;
                }
            }

            return pb;
        }

        /**
         * Averages all the colors in the internal {@link Cairo.Surface}.
         *
         * @return the {@link Granite.Drawing.Color} with the averaged color
         */
        public Drawing.Color average_color () {
            var b_total = 0.0;
            var g_total = 0.0;
            var r_total = 0.0;

            var w = width;
            var h = height;

            var original = new ImageSurface (Format.ARGB32, w, h);
            var cr = new Cairo.Context (original);

            cr.set_operator (Operator.SOURCE);
            cr.set_source_surface (surface, 0, 0);
            cr.paint ();

            uint8 *data = original.get_data ();
            var length = w * h;

            for (var i = 0; i < length; i++) {
                uint8 b = data [0];
                uint8 g = data [1];
                uint8 r = data [2];

                uint8 max = (uint8) double.max (r, double.max (g, b));
                uint8 min = (uint8) double.min (r, double.min (g, b));
                double delta = max - min;

                var sat = delta == 0 ? 0.0 : delta / max;
                var score = 0.2 + 0.8 * sat;

                b_total += b * score;
                g_total += g * score;
                r_total += r * score;

                data += 4;
            }

            return new Drawing.Color (
                r_total / uint8.MAX / length,
                g_total / uint8.MAX / length,
                b_total / uint8.MAX / length,
                1
            ).set_val (0.8).multiply_sat (1.15);
        }

        /**
         * Performs a blur operation on the internal {@link Cairo.Surface}, using the
         * fast-blur algorithm found here [[http://incubator.quasimondo.com/processing/superfastblur.pde]].
         *
         * @param radius the blur radius
         * @param process_count the number of times to perform the operation
         */
        public void fast_blur (int radius, int process_count = 1) {
            if (radius < 1 || process_count < 1) {
                return;
            }

            var w = width;
            var h = height;
            var channels = 4;

            if (radius > w - 1 || radius > h - 1) {
                return;
            }

            var original = new ImageSurface (Format.ARGB32, w, h);
            var cr = new Cairo.Context (original);

            cr.set_operator (Operator.SOURCE);
            cr.set_source_surface (surface, 0, 0);
            cr.paint ();

            uint8 *pixels = original.get_data ();
            var buffer = new uint8[w * h * channels];

            var v_min = new int[int.max (w, h)];
            var v_max = new int[int.max (w, h)];

            var div = 2 * radius + 1;
            var dv = new uint8[256 * div];

            for (var i = 0; i < dv.length; i++) {
                dv[i] = (uint8) (i / div);
            }

            while (process_count-- > 0) {
                for (var x = 0; x < w; x++) {
                    v_min[x] = int.min (x + radius + 1, w - 1);
                    v_max[x] = int.max (x - radius, 0);
                }

                for (var y = 0; y < h; y++) {
                    var a_sum = 0, r_sum = 0, g_sum = 0, b_sum = 0;

                    uint32 cur_pixel = y * w * channels;

                    a_sum += radius * pixels[cur_pixel + 0];
                    r_sum += radius * pixels[cur_pixel + 1];
                    g_sum += radius * pixels[cur_pixel + 2];
                    b_sum += radius * pixels[cur_pixel + 3];

                    for (var i = 0; i <= radius; i++) {
                        a_sum += pixels[cur_pixel + 0];
                        r_sum += pixels[cur_pixel + 1];
                        g_sum += pixels[cur_pixel + 2];
                        b_sum += pixels[cur_pixel + 3];

                        cur_pixel += channels;
                    }

                    cur_pixel = y * w * channels;

                    for (var x = 0; x < w; x++) {
                        uint32 p1 = (y * w + v_min[x]) * channels;
                        uint32 p2 = (y * w + v_max[x]) * channels;

                        buffer[cur_pixel + 0] = dv[a_sum];
                        buffer[cur_pixel + 1] = dv[r_sum];
                        buffer[cur_pixel + 2] = dv[g_sum];
                        buffer[cur_pixel + 3] = dv[b_sum];

                        a_sum += pixels[p1 + 0] - pixels[p2 + 0];
                        r_sum += pixels[p1 + 1] - pixels[p2 + 1];
                        g_sum += pixels[p1 + 2] - pixels[p2 + 2];
                        b_sum += pixels[p1 + 3] - pixels[p2 + 3];

                        cur_pixel += channels;
                    }
                }

                for (var y = 0; y < h; y++) {
                    v_min[y] = int.min (y + radius + 1, h - 1) * w;
                    v_max[y] = int.max (y - radius, 0) * w;
                }

                for (var x = 0; x < w; x++) {
                    var a_sum = 0, r_sum = 0, g_sum = 0, b_sum = 0;

                    uint32 cur_pixel = x * channels;

                    a_sum += radius * buffer[cur_pixel + 0];
                    r_sum += radius * buffer[cur_pixel + 1];
                    g_sum += radius * buffer[cur_pixel + 2];
                    b_sum += radius * buffer[cur_pixel + 3];

                    for (var i = 0; i <= radius; i++) {
                        a_sum += buffer[cur_pixel + 0];
                        r_sum += buffer[cur_pixel + 1];
                        g_sum += buffer[cur_pixel + 2];
                        b_sum += buffer[cur_pixel + 3];

                        cur_pixel += w * channels;
                    }

                    cur_pixel = x * channels;

                    for (var y = 0; y < h; y++) {
                        uint32 p1 = (x + v_min[y]) * channels;
                        uint32 p2 = (x + v_max[y]) * channels;

                        pixels[cur_pixel + 0] = dv[a_sum];
                        pixels[cur_pixel + 1] = dv[r_sum];
                        pixels[cur_pixel + 2] = dv[g_sum];
                        pixels[cur_pixel + 3] = dv[b_sum];

                        a_sum += buffer[p1 + 0] - buffer[p2 + 0];
                        r_sum += buffer[p1 + 1] - buffer[p2 + 1];
                        g_sum += buffer[p1 + 2] - buffer[p2 + 2];
                        b_sum += buffer[p1 + 3] - buffer[p2 + 3];

                        cur_pixel += w * channels;
                    }
                }
            }

            original.mark_dirty ();

            context.set_operator (Operator.SOURCE);
            context.set_source_surface (original, 0, 0);
            context.paint ();
            context.set_operator (Operator.OVER);
        }

        const int ALPHA_PRECISION = 16;
        const int PARAM_PRECISION = 7;

        /**
         * Performs a blur operation on the internal {@link Cairo.Surface}, using an
         * exponential blurring algorithm. This method is usually the fastest
         * and produces good-looking results (though not quite as good as gaussian's).
         *
         * @param radius the blur radius
         */
        public void exponential_blur (int radius) {
            if (radius < 1) {
                return;
            }

            var alpha = (int) ((1 << ALPHA_PRECISION) * (1.0 - Math.exp (-2.3 / (radius + 1.0))));
            var height = this.height;
            var width = this.width;

            var original = new ImageSurface (Format.ARGB32, width, height);
            var cr = new Cairo.Context (original);

            cr.set_operator (Operator.SOURCE);
            cr.set_source_surface (surface, 0, 0);
            cr.paint ();

            uint8 *pixels = original.get_data ();

            try {
                // Process Rows
                var th = new Thread<void*>.try (null, () => {
                    exponential_blur_rows (pixels, width, height, 0, height / 2, 0, width, alpha);
                    return null;
                });

                exponential_blur_rows (pixels, width, height, height / 2, height, 0, width, alpha);
                th.join ();

                // Process Columns
                var th2 = new Thread<void*>.try (null, () => {
                    exponential_blur_columns (pixels, width, height, 0, width / 2, 0, height, alpha);
                    return null;
                });

                exponential_blur_columns (pixels, width, height, width / 2, width, 0, height, alpha);
                th2.join ();
            } catch (Error err) {
                warning (err.message);
            }

            original.mark_dirty ();

            context.set_operator (Operator.SOURCE);
            context.set_source_surface (original, 0, 0);
            context.paint ();
            context.set_operator (Operator.OVER);
        }

        void exponential_blur_columns (
            uint8* pixels,
            int width,
            int height,
            int start_col,
            int end_col,
            int start_y,
            int end_y,
            int alpha
        ) {
            for (var column_index = start_col; column_index < end_col; column_index++) {
                // blur columns
                uint8 *column = pixels + column_index * 4;

                var z_alpha = column[0] << PARAM_PRECISION;
                var z_red = column[1] << PARAM_PRECISION;
                var z_green = column[2] << PARAM_PRECISION;
                var z_blue = column[3] << PARAM_PRECISION;

                // Top to Bottom
                for (var index = width * (start_y + 1); index < (end_y - 1) * width; index += width) {
                    exponential_blur_inner (&column[index * 4], ref z_alpha, ref z_red, ref z_green, ref z_blue, alpha);
                }

                // Bottom to Top
                for (var index = (end_y - 2) * width; index >= start_y; index -= width) {
                    exponential_blur_inner (&column[index * 4], ref z_alpha, ref z_red, ref z_green, ref z_blue, alpha);
                }
            }
        }

        void exponential_blur_rows (
            uint8* pixels,
            int width,
            int height,
            int start_row,
            int end_row,
            int start_x,
            int end_x,
            int alpha
        ) {
            for (var row_index = start_row; row_index < end_row; row_index++) {
                // Get a pointer to our current row
                uint8* row = pixels + row_index * width * 4;

                var z_alpha = row[start_x + 0] << PARAM_PRECISION;
                var z_red = row[start_x + 1] << PARAM_PRECISION;
                var z_green = row[start_x + 2] << PARAM_PRECISION;
                var z_blue = row[start_x + 3] << PARAM_PRECISION;

                // Left to Right
                for (var index = start_x + 1; index < end_x; index++)
                    exponential_blur_inner (&row[index * 4], ref z_alpha, ref z_red, ref z_green, ref z_blue, alpha);

                // Right to Left
                for (var index = end_x - 2; index >= start_x; index--)
                    exponential_blur_inner (&row[index * 4], ref z_alpha, ref z_red, ref z_green, ref z_blue, alpha);
            }
        }

        private static inline void exponential_blur_inner (
            uint8* pixel,
            ref int z_alpha,
            ref int z_red,
            ref int z_green,
            ref int z_blue,
            int alpha
        ) {
            z_alpha += (alpha * ((pixel[0] << PARAM_PRECISION) - z_alpha)) >> ALPHA_PRECISION;
            z_red += (alpha * ((pixel[1] << PARAM_PRECISION) - z_red)) >> ALPHA_PRECISION;
            z_green += (alpha * ((pixel[2] << PARAM_PRECISION) - z_green)) >> ALPHA_PRECISION;
            z_blue += (alpha * ((pixel[3] << PARAM_PRECISION) - z_blue)) >> ALPHA_PRECISION;

            pixel[0] = (uint8) (z_alpha >> PARAM_PRECISION);
            pixel[1] = (uint8) (z_red >> PARAM_PRECISION);
            pixel[2] = (uint8) (z_green >> PARAM_PRECISION);
            pixel[3] = (uint8) (z_blue >> PARAM_PRECISION);
        }

        /**
         * Performs a blur operation on the internal {@link Cairo.Surface}, using a
         * gaussian blurring algorithm. This method is very slow, albeit producing
         * debatably the best-looking results, and in most cases developers should
         * use the exponential blurring algorithm instead.
         *
         * @param radius the blur radius
         */
        public void gaussian_blur (int radius) {
            var gauss_width = radius * 2 + 1;
            var kernel = build_gaussian_kernel (gauss_width);

            var width = this.width;
            var height = this.height;

            var original = new ImageSurface (Format.ARGB32, width, height);
            var cr = new Cairo.Context (original);

            cr.set_operator (Operator.SOURCE);
            cr.set_source_surface (surface, 0, 0);
            cr.paint ();

            uint8 *src = original.get_data ();

            var size = height * original.get_stride ();

            var buffer_a = new double[size];
            var buffer_b = new double[size];

            // Copy image to double[] for faster horizontal pass
            for (var i = 0; i < size; i++) {
                buffer_a[i] = (double) src[i];
            }

            // Precompute horizontal shifts
            var shiftar = new int[int.max (width, height), gauss_width];
            for (var x = 0; x < width; x++)
                for (var k = 0; k < gauss_width; k++) {
                    var shift = k - radius;
                    if (x + shift <= 0 || x + shift >= width)
                        shiftar[x, k] = 0;
                    else
                        shiftar[x, k] = shift * 4;
                }

            try {
                // Horizontal Pass
                var th = new Thread<void*>.try (null, () => {
                    gaussian_blur_horizontal (
                        buffer_a,
                        buffer_b,
                        kernel,
                        gauss_width,
                        width,
                        height,
                        0,
                        height / 2,
                        shiftar
                    );
                    return null;
                });

                gaussian_blur_horizontal (
                    buffer_a,
                    buffer_b,
                    kernel,
                    gauss_width,
                    width,
                    height,
                    height / 2,
                    height,
                    shiftar
                );
                th.join ();

                // Clear buffer
                memset (buffer_a, 0, sizeof (double) * size);

                // Precompute vertical shifts
                shiftar = new int[int.max (width, height), gauss_width];
                for (var y = 0; y < height; y++)
                    for (var k = 0; k < gauss_width; k++) {
                        var shift = k - radius;
                        if (y + shift <= 0 || y + shift >= height)
                            shiftar[y, k] = 0;
                        else
                            shiftar[y, k] = shift * width * 4;
                    }

                // Vertical Pass
                var th2 = new Thread<void*>.try (null, () => {
                    gaussian_blur_vertical (
                        buffer_b,
                        buffer_a,
                        kernel,
                        gauss_width,
                        width,
                        height,
                        0,
                        width / 2,
                        shiftar
                    );
                    return null;
                });

                gaussian_blur_vertical (
                    buffer_b,
                    buffer_a,
                    kernel,
                    gauss_width,
                    width,
                    height,
                    width / 2,
                    width,
                    shiftar
                );
                th2.join ();
            } catch (Error err) {
                message (err.message);
            }

            // Save blurred image to original uint8[]
            for (var i = 0; i < size; i++) {
                src[i] = (uint8) buffer_a[i];
            }

            original.mark_dirty ();

            context.set_operator (Operator.SOURCE);
            context.set_source_surface (original, 0, 0);
            context.paint ();
            context.set_operator (Operator.OVER);
        }

        void gaussian_blur_horizontal (
            double* src,
            double* dest,
            double* kernel,
            int gauss_width,
            int width,
            int height,
            int start_row,
            int end_row,
            int[,] shift
        ) {
            uint32 cur_pixel = start_row * width * 4;

            for (var y = start_row; y < end_row; y++) {
                for (var x = 0; x < width; x++) {
                    for (var k = 0; k < gauss_width; k++) {
                        var source = cur_pixel + shift[x, k];

                        dest[cur_pixel + 0] += src[source + 0] * kernel[k];
                        dest[cur_pixel + 1] += src[source + 1] * kernel[k];
                        dest[cur_pixel + 2] += src[source + 2] * kernel[k];
                        dest[cur_pixel + 3] += src[source + 3] * kernel[k];
                    }

                    cur_pixel += 4;
                }
            }
        }

        void gaussian_blur_vertical (
            double* src,
            double* dest,
            double* kernel,
            int gauss_width,
            int width,
            int height,
            int start_col,
            int end_col,
            int[,] shift
        ) {
            uint32 cur_pixel = start_col * 4;

            for (var y = 0; y < height; y++) {
                for (var x = start_col; x < end_col; x++) {
                    for (var k = 0; k < gauss_width; k++) {
                        var source = cur_pixel + shift[y, k];

                        dest[cur_pixel + 0] += src[source + 0] * kernel[k];
                        dest[cur_pixel + 1] += src[source + 1] * kernel[k];
                        dest[cur_pixel + 2] += src[source + 2] * kernel[k];
                        dest[cur_pixel + 3] += src[source + 3] * kernel[k];
                    }

                    cur_pixel += 4;
                }
                cur_pixel += (width - end_col + start_col) * 4;
            }
        }

        static double[] build_gaussian_kernel (int gauss_width) requires (gauss_width % 2 == 1) {
            var kernel = new double[gauss_width];

            // Maximum value of curve
            var sd = 255.0;

            // width of curve
            var range = gauss_width;

            // Average value of curve
            var mean = range / sd;

            for (var i = 0; i < gauss_width / 2 + 1; i++) {
                kernel[gauss_width - i - 1] = kernel[i] = Math.pow (
                    Math.sin (((i + 1) * (Math.PI / 2) - mean) / range), 2
                ) * sd;
            }

            // normalize the values
            var gauss_sum = 0.0;

            foreach (var d in kernel) {
                gauss_sum += d;
            }

            for (var i = 0; i < kernel.length; i++) {
                kernel[i] = kernel[i] / gauss_sum;
            }

            return kernel;
        }
    }
}