1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
|
# coding: utf-8
# Copyright 2008 Orbitz WorldWide
# Copyright 2014 Bruno Renié
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from datetime import datetime, timedelta
from functools import partial
from operator import is_not, itemgetter
import math
import re
import random
import six
import time
from six.moves import zip_longest, map, reduce
from .render.attime import parseTimeOffset, parseATTime
from .render.glyph import format_units
from .render.datalib import TimeSeries, fetchData
from .utils import to_seconds, epoch
NAN = float('NaN')
INF = float('inf')
MINUTE = 60
HOUR = MINUTE * 60
DAY = HOUR * 24
# Utility functions
not_none = partial(filter, partial(is_not, None))
def not_empty(values):
for v in values:
if v is not None:
return True
return False
def safe(f):
def inner(values):
vals = list(not_none(values))
if not vals:
return
return f(vals)
return inner
safeSum = safe(sum)
safeMin = safe(min)
safeMax = safe(max)
@safe
def safeDiff(safeValues):
values = list(map(lambda x: -x, safeValues[1:]))
values.insert(0, safeValues[0])
return sum(values)
def safeLen(values):
return len(list(not_none(values)))
def safeDiv(a, b):
if a is None:
return None
if b in (0, None):
return None
return float(a) / float(b)
def safeMul(*factors):
if None in factors:
return
product = 1
for factor in factors:
product *= float(factor)
return product
def safeSubtract(a, b):
if a is None or b is None:
return None
return float(a) - float(b)
def safeAvg(a):
return safeDiv(safeSum(a), safeLen(a))
def safeStdDev(a):
sm = safeSum(a)
ln = safeLen(a)
avg = safeDiv(sm, ln)
sum = 0
for val in not_none(a):
sum = sum + (val - avg) * (val - avg)
return math.sqrt(sum/ln)
def safeLast(values):
for v in reversed(values):
if v is not None:
return v
def safeMap(function, values):
safeValues = list(not_none(values))
if safeValues:
return [function(x) for x in values]
def safeAbs(value):
if value is None:
return None
return abs(value)
# Greatest common divisor
def gcd(a, b):
if b == 0:
return a
return gcd(b, a % b)
# Least common multiple
def lcm(a, b):
if a == b:
return a
if a < b:
a, b = b, a # ensure a > b
return a / gcd(a, b) * b
def normalize(seriesLists):
seriesList = reduce(lambda L1, L2: L1+L2, seriesLists)
step = reduce(lcm, [s.step for s in seriesList])
for s in seriesList:
s.consolidate(step // s.step)
start = min([s.start for s in seriesList])
end = max([s.end for s in seriesList])
end -= (end - start) % step
return seriesList, start, end, step
def formatPathExpressions(seriesList):
"""
Returns a comma-separated list of unique path expressions.
"""
pathExpressions = sorted(set([s.pathExpression for s in seriesList]))
return ','.join(pathExpressions)
# Series Functions
def sumSeries(requestContext, *seriesLists):
"""
Short form: sum()
This will add metrics together and return the sum at each datapoint. (See
integral for a sum over time)
Example::
&target=sum(company.server.application*.requestsHandled)
This would show the sum of all requests handled per minute (provided
requestsHandled are collected once a minute). If metrics with different
retention rates are combined, the coarsest metric is graphed, and the sum
of the other metrics is averaged for the metrics with finer retention
rates.
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "sumSeries(%s)" % formatPathExpressions(seriesList)
values = (safeSum(row) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def sumSeriesWithWildcards(requestContext, seriesList, *positions):
"""
Call sumSeries after inserting wildcards at the given position(s).
Example::
&target=sumSeriesWithWildcards(host.cpu-[0-7].cpu-{user,system}.value,
1)
This would be the equivalent of::
&target=sumSeries(host.*.cpu-user.value)&target=sumSeries(
host.*.cpu-system.value)
"""
newSeries = {}
newNames = list()
for series in seriesList:
newname = '.'.join(map(lambda x: x[1],
filter(lambda i: i[0] not in positions,
enumerate(series.name.split('.')))))
if newname in newSeries:
newSeries[newname] = sumSeries(requestContext,
(series, newSeries[newname]))[0]
else:
newSeries[newname] = series
newNames.append(newname)
newSeries[newname].name = newname
return [newSeries[name] for name in newNames]
def averageSeriesWithWildcards(requestContext, seriesList, *positions):
"""
Call averageSeries after inserting wildcards at the given position(s).
Example::
&target=averageSeriesWithWildcards(
host.cpu-[0-7].cpu-{user,system}.value, 1)
This would be the equivalent of::
&target=averageSeries(host.*.cpu-user.value)&target=averageSeries(
host.*.cpu-system.value)
"""
matchedList = defaultdict(list)
for series in seriesList:
newname = '.'.join(map(lambda x: x[1],
filter(lambda i: i[0] not in positions,
enumerate(series.name.split('.')))))
matchedList[newname].append(series)
result = []
for name in matchedList:
[series] = averageSeries(requestContext, (matchedList[name]))
series.name = name
result.append(series)
return result
def multiplySeriesWithWildcards(requestContext, seriesList, *position):
"""
Call multiplySeries after inserting wildcards at the given position(s).
Example::
&target=multiplySeriesWithWildcards(
web.host-[0-7].{avg-response,total-request}.value, 2)
This would be the equivalent of::
&target=multiplySeries(web.host-0.{avg-response,total-request}.value)
&target=multiplySeries(web.host-1.{avg-response,total-request}.value)
...
"""
positions = [position] if isinstance(position, int) else position
newSeries = {}
newNames = []
for series in seriesList:
new_name = ".".join(map(lambda x: x[1],
filter(lambda i: i[0] not in positions,
enumerate(series.name.split('.')))))
if new_name in newSeries:
[newSeries[new_name]] = multiplySeries(requestContext,
(newSeries[new_name],
series))
else:
newSeries[new_name] = series
newNames.append(new_name)
newSeries[new_name].name = new_name
return [newSeries[name] for name in newNames]
def diffSeries(requestContext, *seriesLists):
"""
Subtracts series 2 through n from series 1.
Example::
&target=diffSeries(service.connections.total,
service.connections.failed)
To diff a series and a constant, one should use offset instead of
(or in addition to) diffSeries.
Example::
&target=offset(service.connections.total, -5)
&target=offset(diffSeries(service.connections.total,
service.connections.failed), -4)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "diffSeries(%s)" % formatPathExpressions(seriesList)
values = (safeDiff(row) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def averageSeries(requestContext, *seriesLists):
"""
Short Alias: avg()
Takes one metric or a wildcard seriesList.
Draws the average value of all metrics passed at each time.
Example::
&target=averageSeries(company.server.*.threads.busy)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "averageSeries(%s)" % formatPathExpressions(seriesList)
values = (safeDiv(safeSum(row), safeLen(row))
for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def stddevSeries(requestContext, *seriesLists):
"""
Takes one metric or a wildcard seriesList.
Draws the standard deviation of all metrics passed at each time.
Example::
&target=stddevSeries(company.server.*.threads.busy)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "stddevSeries(%s)" % formatPathExpressions(seriesList)
values = (safeStdDev(row) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def minSeries(requestContext, *seriesLists):
"""
Takes one metric or a wildcard seriesList.
For each datapoint from each metric passed in, pick the minimum value and
graph it.
Example::
&target=minSeries(Server*.connections.total)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "minSeries(%s)" % formatPathExpressions(seriesList)
values = (safeMin(row) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def maxSeries(requestContext, *seriesLists):
"""
Takes one metric or a wildcard seriesList. For each datapoint from each
metric passed in, pick the maximum value and graph it.
Example::
&target=maxSeries(Server*.connections.total)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "maxSeries(%s)" % formatPathExpressions(seriesList)
values = (safeMax(row) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def rangeOfSeries(requestContext, *seriesLists):
"""
Takes a wildcard seriesList.
Distills down a set of inputs into the range of the series
Example::
&target=rangeOfSeries(Server*.connections.total)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "rangeOfSeries(%s)" % formatPathExpressions(seriesList)
values = (safeSubtract(max(row),
min(row)) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def percentileOfSeries(requestContext, seriesList, n, interpolate=False):
"""
percentileOfSeries returns a single series which is composed of the
n-percentile values taken across a wildcard series at each point.
Unless `interpolate` is set to True, percentile values are actual values
contained in one of the supplied series.
"""
if n <= 0:
raise ValueError(
'The requested percent is required to be greater than 0')
if not seriesList:
return []
name = 'percentileOfSeries(%s,%g)' % (seriesList[0].pathExpression, n)
start, end, step = normalize([seriesList])[1:]
values = [_getPercentile(row, n, interpolate)
for row in zip_longest(*seriesList)]
resultSeries = TimeSeries(name, start, end, step, values)
resultSeries.pathExpression = name
return [resultSeries]
def keepLastValue(requestContext, seriesList, limit=INF):
"""
Takes one metric or a wildcard seriesList, and optionally a limit to the
number of 'None' values to skip over. Continues the line with the last
received value when gaps ('None' values) appear in your data, rather than
breaking your line.
Example::
&target=keepLastValue(Server01.connections.handled)
&target=keepLastValue(Server01.connections.handled, 10)
"""
for series in seriesList:
series.name = "keepLastValue(%s)" % (series.name)
series.pathExpression = series.name
consecutiveNones = 0
for i, value in enumerate(series):
series[i] = value
# No 'keeping' can be done on the first value because we have no
# idea what came before it.
if i == 0:
continue
if value is None:
consecutiveNones += 1
else:
if 0 < consecutiveNones <= limit:
# If a non-None value is seen before the limit of Nones is
# hit, backfill all the missing datapoints with the last
# known value.
for index in range(i - consecutiveNones, i):
series[index] = series[i - consecutiveNones - 1]
consecutiveNones = 0
# If the series ends with some None values, try to backfill a bit to
# cover it.
if 0 < consecutiveNones < limit:
for index in range(len(series) - consecutiveNones, len(series)):
series[index] = series[len(series) - consecutiveNones - 1]
return seriesList
def changed(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList.
Output 1 when the value changed, 0 when null or the same
Example::
&target=changed(Server01.connections.handled)
"""
for series in seriesList:
series.name = series.pathExpression = 'changed(%s)' % series.name
previous = None
for index, value in enumerate(series):
if previous is None:
series[index] = 0
elif value is not None and previous != value:
series[index] = 1
else:
series[index] = 0
previous = value
return seriesList
def asPercent(requestContext, seriesList, total=None):
"""
Calculates a percentage of the total of a wildcard series. If `total` is
specified, each series will be calculated as a percentage of that total.
If `total` is not specified, the sum of all points in the wildcard series
will be used instead.
The `total` parameter may be a single series or a numeric value.
Example::
&target=asPercent(Server01.connections.{failed,succeeded},
Server01.connections.attempted)
&target=asPercent(apache01.threads.busy,1500)
&target=asPercent(Server01.cpu.*.jiffies)
"""
if not seriesList:
return []
normalize([seriesList])
if total is None:
totalValues = [safeSum(row) for row in zip_longest(*seriesList)]
totalText = None # series.pathExpression
elif isinstance(total, list):
if len(total) != 1:
raise ValueError(
"asPercent second argument must reference exactly 1 series")
normalize([seriesList, total])
totalValues = total[0]
totalText = totalValues.name
else:
totalValues = [total] * len(seriesList[0])
totalText = str(total)
resultList = []
for series in seriesList:
resultValues = [safeMul(safeDiv(val, totalVal), 100.0)
for val, totalVal in zip_longest(series, totalValues)]
name = "asPercent(%s, %s)" % (series.name,
totalText or series.pathExpression)
resultSeries = TimeSeries(name, series.start, series.end, series.step,
resultValues)
resultSeries.pathExpression = name
resultList.append(resultSeries)
return resultList
def divideSeries(requestContext, dividendSeriesList, divisorSeriesList):
"""
Takes a dividend metric and a divisor metric and draws the division result.
A constant may *not* be passed. To divide by a constant, use the scale()
function (which is essentially a multiplication operation) and use the
inverse of the dividend. (Division by 8 = multiplication by 1/8 or 0.125)
Example::
&target=divideSeries(Series.dividends,Series.divisors)
"""
if len(divisorSeriesList) != 1:
raise ValueError(
"divideSeries second argument must reference exactly 1 series")
[divisorSeries] = divisorSeriesList
results = []
for dividendSeries in dividendSeriesList:
name = "divideSeries(%s,%s)" % (dividendSeries.name,
divisorSeries.name)
bothSeries = (dividendSeries, divisorSeries)
step = reduce(lcm, [s.step for s in bothSeries])
for s in bothSeries:
s.consolidate(step / s.step)
start = min([s.start for s in bothSeries])
end = max([s.end for s in bothSeries])
end -= (end - start) % step
values = (safeDiv(v1, v2) for v1, v2 in zip_longest(*bothSeries))
quotientSeries = TimeSeries(name, start, end, step, values)
quotientSeries.pathExpression = name
results.append(quotientSeries)
return results
def multiplySeries(requestContext, *seriesLists):
"""
Takes two or more series and multiplies their points. A constant may not be
used. To multiply by a constant, use the scale() function.
Example::
&target=multiplySeries(Series.dividends,Series.divisors)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
if len(seriesList) == 1:
return seriesList
name = "multiplySeries(%s)" % ','.join([s.name for s in seriesList])
product = map(lambda x: safeMul(*x), zip_longest(*seriesList))
resultSeries = TimeSeries(name, start, end, step, product)
resultSeries.pathExpression = name
return [resultSeries]
def weightedAverage(requestContext, seriesListAvg, seriesListWeight, node):
"""
Takes a series of average values and a series of weights and
produces a weighted average for all values.
The corresponding values should share a node as defined
by the node parameter, 0-indexed.
Example::
&target=weightedAverage(*.transactions.mean,*.transactions.count,0)
"""
sortedSeries = {}
for seriesAvg, seriesWeight in zip_longest(
seriesListAvg, seriesListWeight):
key = seriesAvg.name.split(".")[node]
sortedSeries.setdefault(key, {})
sortedSeries[key]['avg'] = seriesAvg
key = seriesWeight.name.split(".")[node]
sortedSeries.setdefault(key, {})
sortedSeries[key]['weight'] = seriesWeight
productList = []
for key in sortedSeries:
if 'weight' not in sortedSeries[key]:
continue
if 'avg' not in sortedSeries[key]:
continue
seriesWeight = sortedSeries[key]['weight']
seriesAvg = sortedSeries[key]['avg']
productValues = [safeMul(val1, val2)
for val1, val2
in zip_longest(seriesAvg, seriesWeight)]
name = 'product(%s,%s)' % (seriesWeight.name, seriesAvg.name)
productSeries = TimeSeries(name, seriesAvg.start, seriesAvg.end,
seriesAvg.step, productValues)
productSeries.pathExpression = name
productList.append(productSeries)
[sumProducts] = sumSeries(requestContext, productList)
[sumWeights] = sumSeries(requestContext, seriesListWeight)
resultValues = [safeDiv(val1, val2)
for val1, val2 in zip_longest(sumProducts, sumWeights)]
name = "weightedAverage(%s, %s)" % (
','.join(set(s.pathExpression for s in seriesListAvg)),
','.join(set(s.pathExpression for s in seriesListWeight)))
resultSeries = TimeSeries(name, sumProducts.start, sumProducts.end,
sumProducts.step, resultValues)
resultSeries.pathExpression = name
return resultSeries
def movingMedian(requestContext, seriesList, windowSize):
"""
Graphs the moving median of a metric (or metrics) over a fixed number of
past points, or a time interval.
Takes one metric or a wildcard seriesList followed by a number N of
datapoints or a quoted string with a length of time like '1hour' or '5min'
(See ``from / until`` in the render\_api_ for examples of time formats).
Graphs the median of the preceeding datapoints for each point on the
graph. All previous datapoints are set to None at the beginning of the
graph.
Example::
&target=movingMedian(Server.instance01.threads.busy,10)
&target=movingMedian(Server.instance*.threads.idle,'5min')
"""
windowInterval = None
if isinstance(windowSize, six.string_types):
delta = parseTimeOffset(windowSize)
windowInterval = to_seconds(delta)
if windowInterval:
bootstrapSeconds = windowInterval
else:
bootstrapSeconds = max([s.step for s in seriesList]) * int(windowSize)
bootstrapList = _fetchWithBootstrap(requestContext, seriesList,
seconds=bootstrapSeconds)
result = []
for bootstrap, series in zip_longest(bootstrapList, seriesList):
if windowInterval:
windowPoints = windowInterval // series.step
else:
windowPoints = int(windowSize)
if isinstance(windowSize, six.string_types):
newName = 'movingMedian(%s,"%s")' % (series.name, windowSize)
else:
newName = "movingMedian(%s,%d)" % (series.name, windowPoints)
newSeries = TimeSeries(newName, series.start, series.end, series.step,
[])
newSeries.pathExpression = newName
offset = len(bootstrap) - len(series)
for i in range(len(series)):
window = bootstrap[i + offset - windowPoints:i + offset]
nonNull = [v for v in window if v is not None]
if nonNull:
m_index = len(nonNull) // 2
newSeries.append(sorted(nonNull)[m_index])
else:
newSeries.append(None)
result.append(newSeries)
return result
def scale(requestContext, seriesList, factor):
"""
Takes one metric or a wildcard seriesList followed by a constant, and
multiplies the datapoint by the constant provided at each point.
Example::
&target=scale(Server.instance01.threads.busy,10)
&target=scale(Server.instance*.threads.busy,10)
"""
for series in seriesList:
series.name = "scale(%s,%g)" % (series.name, float(factor))
series.pathExpression = series.name
for i, value in enumerate(series):
series[i] = safeMul(value, factor)
return seriesList
def invert(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList, and inverts each datapoint
(i.e. 1/x).
Example::
&target=invert(Server.instance01.threads.busy)
"""
for series in seriesList:
series.name = "invert(%s)" % (series.name)
for i, value in enumerate(series):
series[i] = safeDiv(1, value)
return seriesList
def scaleToSeconds(requestContext, seriesList, seconds):
"""
Takes one metric or a wildcard seriesList and returns "value per seconds"
where seconds is a last argument to this functions.
Useful in conjunction with derivative or integral function if you want
to normalize its result to a known resolution for arbitrary retentions
"""
for series in seriesList:
series.name = "scaleToSeconds(%s,%d)" % (series.name, seconds)
series.pathExpression = series.name
for i, value in enumerate(series):
factor = seconds * 1.0 / series.step
series[i] = safeMul(value, factor)
return seriesList
def absolute(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList and applies the mathematical abs
function to each datapoint transforming it to its absolute value.
Example::
&target=absolute(Server.instance01.threads.busy)
&target=absolute(Server.instance*.threads.busy)
"""
for series in seriesList:
series.name = "absolute(%s)" % (series.name)
series.pathExpression = series.name
for i, value in enumerate(series):
series[i] = safeAbs(value)
return seriesList
def offset(requestContext, seriesList, factor):
"""
Takes one metric or a wildcard seriesList followed by a constant, and adds
the constant to each datapoint.
Example::
&target=offset(Server.instance01.threads.busy,10)
"""
for series in seriesList:
series.name = "offset(%s,%g)" % (series.name, float(factor))
series.pathExpression = series.name
for i, value in enumerate(series):
if value is not None:
series[i] = value + factor
return seriesList
def offsetToZero(requestContext, seriesList):
"""
Offsets a metric or wildcard seriesList by subtracting the minimum
value in the series from each datapoint.
Useful to compare different series where the values in each series
may be higher or lower on average but you're only interested in the
relative difference.
An example use case is for comparing different round trip time
results. When measuring RTT (like pinging a server), different
devices may come back with consistently different results due to
network latency which will be different depending on how many
network hops between the probe and the device. To compare different
devices in the same graph, the network latency to each has to be
factored out of the results. This is a shortcut that takes the
fastest response (lowest number in the series) and sets that to zero
and then offsets all of the other datapoints in that series by that
amount. This makes the assumption that the lowest response is the
fastest the device can respond, of course the more datapoints that
are in the series the more accurate this assumption is.
Example::
&target=offsetToZero(Server.instance01.responseTime)
&target=offsetToZero(Server.instance*.responseTime)
"""
for series in seriesList:
series.name = "offsetToZero(%s)" % (series.name)
minimum = safeMin(series)
for i, value in enumerate(series):
if value is not None:
series[i] = value - minimum
return seriesList
def movingAverage(requestContext, seriesList, windowSize):
"""
Graphs the moving average of a metric (or metrics) over a fixed number of
past points, or a time interval.
Takes one metric or a wildcard seriesList followed by a number N of
datapoints or a quoted string with a length of time like '1hour' or '5min'
(See ``from / until`` in the render\_api_ for examples of time formats).
Graphs the average of the preceeding datapoints for each point on the
graph. All previous datapoints are set to None at the beginning of the
graph.
Example::
&target=movingAverage(Server.instance01.threads.busy,10)
&target=movingAverage(Server.instance*.threads.idle,'5min')
"""
if not seriesList:
return []
windowInterval = None
if isinstance(windowSize, six.string_types):
delta = parseTimeOffset(windowSize)
windowInterval = to_seconds(delta)
if windowInterval:
bootstrapSeconds = windowInterval
else:
bootstrapSeconds = max([s.step for s in seriesList]) * int(windowSize)
bootstrapList = _fetchWithBootstrap(requestContext, seriesList,
seconds=bootstrapSeconds)
result = []
for bootstrap, series in zip_longest(bootstrapList, seriesList):
if windowInterval:
windowPoints = windowInterval // series.step
else:
windowPoints = int(windowSize)
if isinstance(windowSize, six.string_types):
newName = 'movingAverage(%s,"%s")' % (series.name, windowSize)
else:
newName = "movingAverage(%s,%s)" % (series.name, windowSize)
newSeries = TimeSeries(newName, series.start, series.end, series.step,
[])
newSeries.pathExpression = newName
offset = len(bootstrap) - len(series)
for i in range(len(series)):
window = bootstrap[i + offset - windowPoints:i + offset]
newSeries.append(safeAvg(window))
result.append(newSeries)
return result
def cumulative(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList, and an optional function.
Valid functions are 'sum', 'average', 'min', and 'max'
Sets the consolidation function to 'sum' for the given metric seriesList.
Alias for :func:`consolidateBy(series, 'sum')
<graphite.render.functions.consolidateBy>`
Example::
&target=cumulative(Sales.widgets.largeBlue)
"""
return consolidateBy(requestContext, seriesList, 'sum')
def consolidateBy(requestContext, seriesList, consolidationFunc):
"""
Takes one metric or a wildcard seriesList and a consolidation function
name.
Valid function names are 'sum', 'average', 'min', and 'max'
When a graph is drawn where width of the graph size in pixels is smaller
than the number of datapoints to be graphed, Graphite consolidates the
values to to prevent line overlap. The consolidateBy() function changes
the consolidation function from the default of 'average' to one of 'sum',
'max', or 'min'. This is especially useful in sales graphs, where
fractional values make no sense and a 'sum' of consolidated values is
appropriate.
Example::
&target=consolidateBy(Sales.widgets.largeBlue, 'sum')
&target=consolidateBy(Servers.web01.sda1.free_space, 'max')
"""
for series in seriesList:
# datalib will throw an exception, so it's not necessary to validate
# here
series.consolidationFunc = consolidationFunc
series.name = 'consolidateBy(%s,"%s")' % (series.name,
series.consolidationFunc)
series.pathExpression = series.name
return seriesList
def derivative(requestContext, seriesList):
"""
This is the opposite of the integral function. This is useful for taking a
running total metric and calculating the delta between subsequent data
points.
This function does not normalize for periods of time, as a true derivative
would. Instead see the perSecond() function to calculate a rate of change
over time.
Example::
&target=derivative(company.server.application01.ifconfig.TXPackets)
Each time you run ifconfig, the RX and TXPackets are higher (assuming there
is network traffic.) By applying the derivative function, you can get an
idea of the packets per minute sent or received, even though you're only
recording the total.
"""
results = []
for series in seriesList:
newValues = []
prev = None
for val in series:
if None in (prev, val):
newValues.append(None)
prev = val
continue
newValues.append(val - prev)
prev = val
newName = "derivative(%s)" % series.name
newSeries = TimeSeries(newName, series.start, series.end, series.step,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def perSecond(requestContext, seriesList, maxValue=None):
"""
Derivative adjusted for the series time interval
This is useful for taking a running total metric and showing how many
requests per second were handled.
Example::
&target=perSecond(company.server.application01.ifconfig.TXPackets)
Each time you run ifconfig, the RX and TXPackets are higher (assuming there
is network traffic.) By applying the derivative function, you can get an
idea of the packets per minute sent or received, even though you're only
recording the total.
"""
results = []
for series in seriesList:
newValues = []
prev = None
for val in series:
step = series.step
if None in (prev, val):
newValues.append(None)
prev = val
continue
diff = val - prev
if diff >= 0:
newValues.append(diff / step)
elif maxValue is not None and maxValue >= val:
newValues.append(((maxValue - prev) + val + 1) / step)
else:
newValues.append(None)
prev = val
newName = "perSecond(%s)" % series.name
newSeries = TimeSeries(newName, series.start, series.end, series.step,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def integral(requestContext, seriesList):
"""
This will show the sum over time, sort of like a continuous addition
function. Useful for finding totals or trends in metrics that are
collected per minute.
Example::
&target=integral(company.sales.perMinute)
This would start at zero on the left side of the graph, adding the sales
each minute, and show the total sales for the time period selected at the
right side, (time now, or the time specified by '&until=').
"""
results = []
for series in seriesList:
newValues = []
current = 0.0
for val in series:
if val is None:
newValues.append(None)
else:
current += val
newValues.append(current)
newName = "integral(%s)" % series.name
newSeries = TimeSeries(newName, series.start, series.end, series.step,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def nonNegativeDerivative(requestContext, seriesList, maxValue=None):
"""
Same as the derivative function above, but ignores datapoints that trend
down. Useful for counters that increase for a long time, then wrap or
reset. (Such as if a network interface is destroyed and recreated by
unloading and re-loading a kernel module, common with USB / WiFi cards.
Example::
&target=nonNegativederivative(
company.server.application01.ifconfig.TXPackets)
"""
results = []
for series in seriesList:
newValues = []
prev = None
for val in series:
if None in (prev, val):
newValues.append(None)
prev = val
continue
diff = val - prev
if diff >= 0:
newValues.append(diff)
elif maxValue is not None and maxValue >= val:
newValues.append((maxValue - prev) + val + 1)
else:
newValues.append(None)
prev = val
newName = "nonNegativeDerivative(%s)" % series.name
newSeries = TimeSeries(newName, series.start, series.end, series.step,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def stacked(requestContext, seriesLists, stackName='__DEFAULT__'):
"""
Takes one metric or a wildcard seriesList and change them so they are
stacked. This is a way of stacking just a couple of metrics without having
to use the stacked area mode (that stacks everything). By means of this a
mixed stacked and non stacked graph can be made
It can also take an optional argument with a name of the stack, in case
there is more than one, e.g. for input and output metrics.
Example::
&target=stacked(company.server.application01.ifconfig.TXPackets, 'tx')
"""
if 'totalStack' in requestContext:
totalStack = requestContext['totalStack'].get(stackName, [])
else:
requestContext['totalStack'] = {}
totalStack = []
results = []
for series in seriesLists:
newValues = []
for i in range(len(series)):
if len(totalStack) <= i:
totalStack.append(0)
if series[i] is not None:
totalStack[i] += series[i]
newValues.append(totalStack[i])
else:
newValues.append(None)
# Work-around for the case when legend is set
if stackName == '__DEFAULT__':
newName = "stacked(%s)" % series.name
else:
newName = series.name
newSeries = TimeSeries(newName, series.start, series.end, series.step,
newValues)
newSeries.options['stacked'] = True
newSeries.pathExpression = newName
results.append(newSeries)
requestContext['totalStack'][stackName] = totalStack
return results
def areaBetween(requestContext, *seriesLists):
"""
Draws the vertical area in between the two series in seriesList. Useful for
visualizing a range such as the minimum and maximum latency for a service.
areaBetween expects **exactly one argument** that results in exactly two
series (see example below). The order of the lower and higher values
series does not matter. The visualization only works when used in
conjunction with ``areaMode=stacked``.
Most likely use case is to provide a band within which another metric
should move. In such case applying an ``alpha()``, as in the second
example, gives best visual results.
Example::
&target=areaBetween(service.latency.{min,max})&areaMode=stacked
&target=alpha(areaBetween(service.latency.{min,max}),0.3)&areaMode=stacked
If for instance, you need to build a seriesList, you should use the
``group`` function, like so::
&target=areaBetween(group(minSeries(a.*.min),maxSeries(a.*.max)))
"""
if len(seriesLists) == 1:
[seriesLists] = seriesLists
assert len(seriesLists) == 2, ("areaBetween series argument must "
"reference *exactly* 2 series")
lower, upper = seriesLists
if len(lower) == 1:
[lower] = lower
if len(upper) == 1:
[upper] = upper
lower.options['stacked'] = True
lower.options['invisible'] = True
upper.options['stacked'] = True
lower.name = upper.name = "areaBetween(%s)" % upper.pathExpression
return [lower, upper]
def aliasSub(requestContext, seriesList, search, replace):
"""
Runs series names through a regex search/replace.
Example::
&target=aliasSub(ip.*TCP*,"^.*TCP(\d+)","\\1")
"""
try:
seriesList.name = re.sub(search, replace, seriesList.name)
except AttributeError:
for series in seriesList:
series.name = re.sub(search, replace, series.name)
return seriesList
def alias(requestContext, seriesList, newName):
"""
Takes one metric or a wildcard seriesList and a string in quotes.
Prints the string instead of the metric name in the legend.
Example::
&target=alias(Sales.widgets.largeBlue,"Large Blue Widgets")
"""
try:
seriesList.name = newName
except AttributeError:
for series in seriesList:
series.name = newName
return seriesList
def cactiStyle(requestContext, seriesList, system=None):
"""
Takes a series list and modifies the aliases to provide column aligned
output with Current, Max, and Min values in the style of cacti. Optionally
takes a "system" value to apply unit formatting in the same style as the
Y-axis.
NOTE: column alignment only works with monospace fonts such as terminus.
Example::
&target=cactiStyle(ganglia.*.net.bytes_out,"si")
"""
def fmt(x):
if system:
return "%.2f%s" % format_units(x, system=system)
else:
return "%.2f" % x
nameLen = max([0] + [len(series.name) for series in seriesList])
lastLen = max([0] + [len(fmt(int(safeLast(series) or 3)))
for series in seriesList]) + 3
maxLen = max([0] + [len(fmt(int(safeMax(series) or 3)))
for series in seriesList]) + 3
minLen = max([0] + [len(fmt(int(safeMin(series) or 3)))
for series in seriesList]) + 3
for series in seriesList:
last = safeLast(series)
maximum = safeMax(series)
minimum = safeMin(series)
if last is None:
last = NAN
else:
last = fmt(float(last))
if maximum is None:
maximum = NAN
else:
maximum = fmt(float(maximum))
if minimum is None:
minimum = NAN
else:
minimum = fmt(float(minimum))
series.name = "%*s Current:%*s Max:%*s Min:%*s " % (
-nameLen, series.name, -lastLen, last,
-maxLen, maximum, -minLen, minimum)
return seriesList
def aliasByNode(requestContext, seriesList, *nodes):
"""
Takes a seriesList and applies an alias derived from one or more "node"
portion/s of the target name. Node indices are 0 indexed.
Example::
&target=aliasByNode(ganglia.*.cpu.load5,1)
"""
for series in seriesList:
metric_pieces = re.search('(?:.*\()?(?P<name>[-\w*\.:#]+)(?:,|\)?.*)?',
series.name).groups()[0].split('.')
series.name = '.'.join(metric_pieces[n] for n in nodes)
return seriesList
def aliasByMetric(requestContext, seriesList):
"""
Takes a seriesList and applies an alias derived from the base metric name.
Example::
&target=aliasByMetric(carbon.agents.graphite.creates)
"""
for series in seriesList:
series.name = series.name.split('.')[-1].split(',')[0].strip(')')
return seriesList
def legendValue(requestContext, seriesList, *valueTypes):
"""
Takes one metric or a wildcard seriesList and a string in quotes.
Appends a value to the metric name in the legend. Currently one or several
of: `last`, `avg`, `total`, `min`, `max`. The last argument can be `si`
(default) or `binary`, in that case values will be formatted in the
corresponding system.
Example::
&target=legendValue(Sales.widgets.largeBlue, 'avg', 'max', 'si')
"""
valueFuncs = {
'avg': lambda s: safeDiv(safeSum(s), safeLen(s)),
'total': safeSum,
'min': safeMin,
'max': safeMax,
'last': safeLast,
}
system = None
if valueTypes[-1] in ('si', 'binary'):
system = valueTypes[-1]
valueTypes = valueTypes[:-1]
for valueType in valueTypes:
valueFunc = valueFuncs.get(valueType, lambda s: '(?)')
if system is None:
for series in seriesList:
series.name += " (%s: %s)" % (valueType, valueFunc(series))
else:
for series in seriesList:
value = valueFunc(series)
formatted = None
if value is not None:
formatted = "%.2f%s" % format_units(value, system=system)
series.name = "%-20s%-5s%-10s" % (series.name, valueType,
formatted)
return seriesList
def alpha(requestContext, seriesList, alpha):
"""
Assigns the given alpha transparency setting to the series. Takes a float
value between 0 and 1.
"""
for series in seriesList:
series.options['alpha'] = alpha
return seriesList
def color(requestContext, seriesList, theColor):
"""
Assigns the given color to the seriesList
Example::
&target=color(collectd.hostname.cpu.0.user, 'green')
&target=color(collectd.hostname.cpu.0.system, 'ff0000')
&target=color(collectd.hostname.cpu.0.idle, 'gray')
&target=color(collectd.hostname.cpu.0.idle, '6464ffaa')
"""
for series in seriesList:
series.color = theColor
return seriesList
def substr(requestContext, seriesList, start=0, stop=0):
"""
Takes one metric or a wildcard seriesList followed by 1 or 2 integers.
Assume that the metric name is a list or array, with each element
separated by dots. Prints n - length elements of the array (if only one
integer n is passed) or n - m elements of the array (if two integers n and
m are passed). The list starts with element 0 and ends with element
(length - 1).
Example::
&target=substr(carbon.agents.hostname.avgUpdateTime,2,4)
The label would be printed as "hostname.avgUpdateTime".
"""
for series in seriesList:
left = series.name.rfind('(') + 1
right = series.name.find(')')
if right < 0:
right = len(series.name)+1
cleanName = series.name[left:right:].split('.')
if int(stop) == 0:
series.name = '.'.join(cleanName[int(start)::])
else:
series.name = '.'.join(cleanName[int(start):int(stop):])
# substr(func(a.b,'c'),1) becomes b instead of b,'c'
series.name = re.sub(',.*$', '', series.name)
return seriesList
def logarithm(requestContext, seriesList, base=10):
"""
Takes one metric or a wildcard seriesList, a base, and draws the y-axis in
logarithmic format. If base is omitted, the function defaults to base 10.
Example::
&target=log(carbon.agents.hostname.avgUpdateTime,2)
"""
results = []
for series in seriesList:
newValues = []
for val in series:
if val is None:
newValues.append(None)
elif val <= 0:
newValues.append(None)
else:
newValues.append(math.log(val, base))
newName = "log(%s, %s)" % (series.name, base)
newSeries = TimeSeries(newName, series.start, series.end, series.step,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def maximumAbove(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a maximum value above n.
Example::
&target=maximumAbove(system.interface.eth*.packetsSent,1000)
This would only display interfaces which at one point sent more than
1000 packets/min.
"""
return [s for s in seriesList if max(s) > n]
def minimumAbove(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a minimum value above n.
Example::
&target=minimumAbove(system.interface.eth*.packetsSent,1000)
This would only display interfaces which always sent more than 1000
packets/min.
"""
return [s for s in seriesList if min(s) > n]
def maximumBelow(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a maximum value below n.
Example::
&target=maximumBelow(system.interface.eth*.packetsSent,1000)
This would only display interfaces which always sent less than 1000
packets/min.
"""
return [s for s in seriesList if max(s) <= n]
def minimumBelow(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by a constant n.
Draws only the metrics with a minimum value below n.
Example::
&target=minimumBelow(system.interface.eth*.packetsSent,1000)
This would only display interfaces which sent at one point less than
1000 packets/min.
"""
return [s for s in seriesList if min(s) <= n]
def highestCurrent(requestContext, seriesList, n=1):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the highest value
at the end of the time period specified.
Example::
&target=highestCurrent(server*.instance*.threads.busy,5)
Draws the 5 servers with the highest busy threads.
"""
return sorted(seriesList, key=safeLast)[-n:]
def highestMax(requestContext, seriesList, n=1):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the highest
maximum value in the time period specified.
Example::
&target=highestMax(server*.instance*.threads.busy,5)
Draws the top 5 servers who have had the most busy threads during the time
period specified.
"""
result_list = sorted(seriesList, key=lambda s: max(s))[-n:]
return sorted(result_list, key=lambda s: max(s), reverse=True)
def lowestCurrent(requestContext, seriesList, n=1):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the N metrics with the lowest value
at the end of the time period specified.
Example::
&target=lowestCurrent(server*.instance*.threads.busy,5)
Draws the 5 servers with the least busy threads right now.
"""
return sorted(seriesList, key=safeLast)[:n]
def currentAbove(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics whose value is above N
at the end of the time period specified.
Example::
&target=currentAbove(server*.instance*.threads.busy,50)
Draws the servers with more than 50 busy threads.
"""
return [series for series in seriesList if safeLast(series) >= n]
def currentBelow(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics whose value is below N
at the end of the time period specified.
Example::
&target=currentBelow(server*.instance*.threads.busy,3)
Draws the servers with less than 3 busy threads.
"""
return [series for series in seriesList if safeLast(series) <= n]
def highestAverage(requestContext, seriesList, n=1):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the top N metrics with the highest
average value for the time period specified.
Example::
&target=highestAverage(server*.instance*.threads.busy,5)
Draws the top 5 servers with the highest average value.
"""
return sorted(seriesList, key=safeAvg)[-n:]
def lowestAverage(requestContext, seriesList, n=1):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the bottom N metrics with the lowest
average value for the time period specified.
Example::
&target=lowestAverage(server*.instance*.threads.busy,5)
Draws the bottom 5 servers with the lowest average value.
"""
return sorted(seriesList, key=safeAvg)[:n]
def averageAbove(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics with an average value
above N for the time period specified.
Example::
&target=averageAbove(server*.instance*.threads.busy,25)
Draws the servers with average values above 25.
"""
return [series for series in seriesList if safeAvg(series) >= n]
def averageBelow(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Out of all metrics passed, draws only the metrics with an average value
below N for the time period specified.
Example::
&target=averageBelow(server*.instance*.threads.busy,25)
Draws the servers with average values below 25.
"""
return [series for series in seriesList if safeAvg(series) <= n]
def _getPercentile(points, n, interpolate=False):
"""
Percentile is calculated using the method outlined in the NIST Engineering
Statistics Handbook:
http://www.itl.nist.gov/div898/handbook/prc/section2/prc252.htm
"""
sortedPoints = sorted(not_none(points))
if len(sortedPoints) == 0:
return None
fractionalRank = (n/100.0) * (len(sortedPoints) + 1)
rank = int(fractionalRank)
rankFraction = fractionalRank - rank
if not interpolate:
rank += int(math.ceil(rankFraction))
if rank == 0:
percentile = sortedPoints[0]
elif rank - 1 == len(sortedPoints):
percentile = sortedPoints[-1]
else:
percentile = sortedPoints[rank - 1] # Adjust for 0-index
if interpolate:
if rank != len(sortedPoints): # if a next value exists
nextValue = sortedPoints[rank]
percentile = percentile + rankFraction * (nextValue - percentile)
return percentile
def nPercentile(requestContext, seriesList, n):
"""Returns n-percent of each series in the seriesList."""
assert n, 'The requested percent is required to be greater than 0'
results = []
for s in seriesList:
# Create a sorted copy of the TimeSeries excluding None values in the
# values list.
s_copy = TimeSeries(s.name, s.start, s.end, s.step,
sorted(not_none(s)))
if not s_copy:
continue # Skip this series because it is empty.
perc_val = _getPercentile(s_copy, n)
if perc_val is not None:
name = 'nPercentile(%s, %g)' % (s_copy.name, n)
point_count = int((s.end - s.start)/s.step)
perc_series = TimeSeries(name, s_copy.start, s_copy.end,
s_copy.step, [perc_val] * point_count)
perc_series.pathExpression = name
results.append(perc_series)
return results
def averageOutsidePercentile(requestContext, seriesList, n):
"""
Removes functions lying inside an average percentile interval
"""
averages = [safeAvg(s) for s in seriesList]
if n < 50:
n = 100 - n
lowPercentile = _getPercentile(averages, 100 - n)
highPercentile = _getPercentile(averages, n)
return [s for s in seriesList
if not lowPercentile < safeAvg(s) < highPercentile]
def removeBetweenPercentile(requestContext, seriesList, n):
"""
Removes lines who do not have an value lying in the x-percentile of all
the values at a moment
"""
if n < 50:
n = 100 - n
transposed = list(zip_longest(*seriesList))
lowPercentiles = [_getPercentile(col, 100-n) for col in transposed]
highPercentiles = [_getPercentile(col, n) for col in transposed]
return [l for l in seriesList
if sum([not lowPercentiles[index] < val < highPercentiles[index]
for index, val in enumerate(l)]) > 0]
def removeAbovePercentile(requestContext, seriesList, n):
"""
Removes data above the nth percentile from the series or list of series
provided. Values above this percentile are assigned a value of None.
"""
for s in seriesList:
s.name = 'removeAbovePercentile(%s, %d)' % (s.name, n)
s.pathExpression = s.name
try:
percentile = nPercentile(requestContext, [s], n)[0][0]
except IndexError:
continue
for index, val in enumerate(s):
if val is None:
continue
if val > percentile:
s[index] = None
return seriesList
def removeAboveValue(requestContext, seriesList, n):
"""
Removes data above the given threshold from the series or list of series
provided. Values above this threshole are assigned a value of None.
"""
for s in seriesList:
s.name = 'removeAboveValue(%s, %d)' % (s.name, n)
s.pathExpression = s.name
for (index, val) in enumerate(s):
if val is None:
continue
if val > n:
s[index] = None
return seriesList
def removeBelowPercentile(requestContext, seriesList, n):
"""
Removes data below the nth percentile from the series or list of series
provided. Values below this percentile are assigned a value of None.
"""
for s in seriesList:
s.name = 'removeBelowPercentile(%s, %d)' % (s.name, n)
s.pathExpression = s.name
try:
percentile = nPercentile(requestContext, [s], n)[0][0]
except IndexError:
continue
for (index, val) in enumerate(s):
if val is None:
continue
if val < percentile:
s[index] = None
return seriesList
def removeBelowValue(requestContext, seriesList, n):
"""
Removes data below the given threshold from the series or list of series
provided. Values below this threshole are assigned a value of None.
"""
for s in seriesList:
s.name = 'removeBelowValue(%s, %d)' % (s.name, n)
s.pathExpression = s.name
for index, val in enumerate(s):
if val is None:
continue
if val < n:
s[index] = None
return seriesList
def limit(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Only draw the first N metrics. Useful when testing a wildcard in a
metric.
Example::
&target=limit(server*.instance*.memory.free,5)
Draws only the first 5 instance's memory free.
"""
return seriesList[0:n]
def sortByName(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList.
Sorts the list of metrics by the metric name.
"""
return list(sorted(seriesList, key=lambda x: x.name))
def sortByTotal(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList.
Sorts the list of metrics by the sum of values across the time period
specified.
"""
return list(sorted(seriesList, key=safeSum, reverse=True))
def sortByMaxima(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList.
Sorts the list of metrics by the maximum value across the time period
specified. Useful with the &areaMode=all parameter, to keep the
lowest value lines visible.
Example::
&target=sortByMaxima(server*.instance*.memory.free)
"""
return list(sorted(seriesList, key=max))
def sortByMinima(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList.
Sorts the list of metrics by the lowest value across the time period
specified.
Example::
&target=sortByMinima(server*.instance*.memory.free)
"""
return list(sorted(seriesList, key=min))
def useSeriesAbove(requestContext, seriesList, value, search, replace):
"""
Compares the maximum of each series against the given `value`. If the
series maximum is greater than `value`, the regular expression search and
replace is applied against the series name to plot a related metric.
e.g. given useSeriesAbove(ganglia.metric1.reqs,10,'reqs','time'),
the response time metric will be plotted only when the maximum value of the
corresponding request/s metric is > 10
Example::
&target=useSeriesAbove(ganglia.metric1.reqs,10,"reqs","time")
"""
from .app import evaluateTarget, pathsFromTarget
newSeries = []
for series in seriesList:
newname = re.sub(search, replace, series.name)
if safeMax(series) > value:
paths = pathsFromTarget(newname)
data_store = fetchData(requestContext, paths)
n = evaluateTarget(requestContext, newname, data_store)
if n is not None and len(n) > 0:
newSeries.append(n[0])
return newSeries
def mostDeviant(requestContext, seriesList, n):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Draws the N most deviant metrics.
To find the deviants, the standard deviation (sigma) of each series
is taken and ranked. The top N standard deviations are returned.
Example::
&target=mostDeviant(server*.instance*.memory.free, 5)
Draws the 5 instances furthest from the average memory free.
"""
deviants = []
for series in seriesList:
mean = safeAvg(series)
if mean is None:
continue
square_sum = sum([(value - mean) ** 2 for value in series
if value is not None])
sigma = safeDiv(square_sum, safeLen(series))
if sigma is None:
continue
deviants.append((sigma, series))
return [series for sig, series in sorted(deviants, # sort by sigma
key=itemgetter(0),
reverse=True)][:n]
def stdev(requestContext, seriesList, points, windowTolerance=0.1):
"""
Takes one metric or a wildcard seriesList followed by an integer N.
Draw the Standard Deviation of all metrics passed for the past N
datapoints. If the ratio of null points in the window is greater than
windowTolerance, skip the calculation. The default for windowTolerance is
0.1 (up to 10% of points in the window can be missing). Note that if this
is set to 0.0, it will cause large gaps in the output anywhere a single
point is missing.
Example::
&target=stdev(server*.instance*.threads.busy,30)
&target=stdev(server*.instance*.cpu.system,30,0.0)
"""
# For this we take the standard deviation in terms of the moving average
# and the moving average of series squares.
for seriesIndex, series in enumerate(seriesList):
stddevSeries = TimeSeries("stddev(%s,%d)" % (series.name, int(points)),
series.start, series.end, series.step, [])
stddevSeries.pathExpression = "stddev(%s,%d)" % (series.name,
int(points))
validPoints = 0
currentSum = 0
currentSumOfSquares = 0
for index, newValue in enumerate(series):
# Mark whether we've reached our window size - dont drop points
# out otherwise
if index < points:
bootstrapping = True
droppedValue = None
else:
bootstrapping = False
droppedValue = series[index - points]
# Track non-None points in window
if not bootstrapping and droppedValue is not None:
validPoints -= 1
if newValue is not None:
validPoints += 1
# Remove the value that just dropped out of the window
if not bootstrapping and droppedValue is not None:
currentSum -= droppedValue
currentSumOfSquares -= droppedValue**2
# Add in the value that just popped in the window
if newValue is not None:
currentSum += newValue
currentSumOfSquares += newValue**2
if (
validPoints > 0 and
float(validPoints) / points >= windowTolerance
):
deviation = math.sqrt(validPoints * currentSumOfSquares -
currentSum**2) / validPoints
stddevSeries.append(deviation)
else:
stddevSeries.append(None)
seriesList[seriesIndex] = stddevSeries
return seriesList
def secondYAxis(requestContext, seriesList):
"""
Graph the series on the secondary Y axis.
"""
for series in seriesList:
series.options['secondYAxis'] = True
series.name = 'secondYAxis(%s)' % series.name
return seriesList
def _fetchWithBootstrap(requestContext, seriesList, **delta_kwargs):
"""
Request the same data but with a bootstrap period at the beginning.
"""
from .app import evaluateTarget, pathsFromTarget
bootstrapContext = requestContext.copy()
bootstrapContext['startTime'] = (
requestContext['startTime'] - timedelta(**delta_kwargs))
bootstrapContext['endTime'] = requestContext['startTime']
bootstrapList = []
# Get all paths to fetch
paths = []
for series in seriesList:
if series.pathExpression in [b.pathExpression for b in bootstrapList]:
continue
paths.extend(pathsFromTarget(series.pathExpression))
# Fetch all paths
data_store = fetchData(bootstrapContext, paths)
for series in seriesList:
if series.pathExpression in [b.pathExpression for b in bootstrapList]:
# This pathExpression returns multiple series and we already
# fetched it
continue
bootstraps = evaluateTarget(bootstrapContext,
series.pathExpression,
data_store)
found = dict(((s.name, s) for s in bootstraps))
for s in seriesList:
if s.name not in found:
# bootstrap interval too large for the range available in
# storage. Fill with nulls.
start = epoch(bootstrapContext['startTime'])
end = epoch(bootstrapContext['endTime'])
delta = (end - start) % s.step
values = [None] * delta
found[s.name] = TimeSeries(s.name, start, end, s.step, values)
found[s.name].pathExpression = s.pathExpression
bootstrapList.append(found[s.name])
newSeriesList = []
for bootstrap, original in zip_longest(bootstrapList, seriesList):
newValues = []
if bootstrap.step != original.step:
ratio = bootstrap.step / original.step
for value in bootstrap:
# XXX For series with aggregationMethod = sum this should also
# divide by the ratio to bring counts to the same time unit
# ...but we have no way of knowing whether that's the case
newValues.extend([value] * ratio)
else:
newValues.extend(bootstrap)
newValues.extend(original)
newSeries = TimeSeries(original.name, bootstrap.start, original.end,
original.step, newValues)
newSeries.pathExpression = series.pathExpression
newSeriesList.append(newSeries)
return newSeriesList
def _trimBootstrap(bootstrap, original):
"""
Trim the bootstrap period off the front of this series so it matches the
original.
"""
original_len = len(original)
length_limit = (original_len * original.step) // bootstrap.step
trim_start = bootstrap.end - (length_limit * bootstrap.step)
trimmed = TimeSeries(bootstrap.name, trim_start, bootstrap.end,
bootstrap.step, bootstrap[-length_limit:])
return trimmed
def holtWintersIntercept(alpha, actual, last_season, last_intercept,
last_slope):
return (alpha * (actual - last_season) +
(1 - alpha) * (last_intercept + last_slope))
def holtWintersSlope(beta, intercept, last_intercept, last_slope):
return beta * (intercept - last_intercept) + (1 - beta) * last_slope
def holtWintersSeasonal(gamma, actual, intercept, last_season):
return gamma * (actual - intercept) + (1 - gamma) * last_season
def holtWintersDeviation(gamma, actual, prediction, last_seasonal_dev):
if prediction is None:
prediction = 0
return (gamma * math.fabs(actual - prediction) +
(1 - gamma) * last_seasonal_dev)
def holtWintersAnalysis(series):
alpha = gamma = 0.1
beta = 0.0035
# season is currently one day
season_length = (24 * 60 * 60) // series.step
intercept = 0
slope = 0
intercepts = []
slopes = []
seasonals = []
predictions = []
deviations = []
def getLastSeasonal(i):
j = i - season_length
if j >= 0:
return seasonals[j]
return 0
def getLastDeviation(i):
j = i - season_length
if j >= 0:
return deviations[j]
return 0
last_seasonal = 0
last_seasonal_dev = 0
next_last_seasonal = 0
next_pred = None
for i, actual in enumerate(series):
if actual is None:
# missing input values break all the math
# do the best we can and move on
intercepts.append(None)
slopes.append(0)
seasonals.append(0)
predictions.append(next_pred)
deviations.append(0)
next_pred = None
continue
if i == 0:
last_intercept = actual
last_slope = 0
# seed the first prediction as the first actual
prediction = actual
else:
last_intercept = intercepts[-1]
last_slope = slopes[-1]
if last_intercept is None:
last_intercept = actual
prediction = next_pred
last_seasonal = getLastSeasonal(i)
next_last_seasonal = getLastSeasonal(i+1)
last_seasonal_dev = getLastDeviation(i)
intercept = holtWintersIntercept(alpha, actual, last_seasonal,
last_intercept, last_slope)
slope = holtWintersSlope(beta, intercept, last_intercept, last_slope)
seasonal = holtWintersSeasonal(gamma, actual, intercept, last_seasonal)
next_pred = intercept + slope + next_last_seasonal
deviation = holtWintersDeviation(gamma, actual, prediction,
last_seasonal_dev)
intercepts.append(intercept)
slopes.append(slope)
seasonals.append(seasonal)
predictions.append(prediction)
deviations.append(deviation)
# make the new forecast series
forecastName = "holtWintersForecast(%s)" % series.name
forecastSeries = TimeSeries(forecastName, series.start, series.end,
series.step, predictions)
forecastSeries.pathExpression = forecastName
# make the new deviation series
deviationName = "holtWintersDeviation(%s)" % series.name
deviationSeries = TimeSeries(deviationName, series.start, series.end,
series.step, deviations)
deviationSeries.pathExpression = deviationName
results = {'predictions': forecastSeries,
'deviations': deviationSeries,
'intercepts': intercepts,
'slopes': slopes,
'seasonals': seasonals}
return results
def holtWintersForecast(requestContext, seriesList):
"""
Performs a Holt-Winters forecast using the series as input data. Data from
one week previous to the series is used to bootstrap the initial forecast.
"""
results = []
bootstrapList = _fetchWithBootstrap(requestContext, seriesList, days=7)
for bootstrap, series in zip_longest(bootstrapList, seriesList):
analysis = holtWintersAnalysis(bootstrap)
results.append(_trimBootstrap(analysis['predictions'], series))
return results
def holtWintersConfidenceBands(requestContext, seriesList, delta=3):
"""
Performs a Holt-Winters forecast using the series as input data and plots
upper and lower bands with the predicted forecast deviations.
"""
results = []
bootstrapList = _fetchWithBootstrap(requestContext, seriesList, days=7)
for bootstrap, series in zip_longest(bootstrapList, seriesList):
analysis = holtWintersAnalysis(bootstrap)
forecast = _trimBootstrap(analysis['predictions'], series)
deviation = _trimBootstrap(analysis['deviations'], series)
seriesLength = len(forecast)
i = 0
upperBand = list()
lowerBand = list()
while i < seriesLength:
forecast_item = forecast[i]
deviation_item = deviation[i]
i = i + 1
if forecast_item is None or deviation_item is None:
upperBand.append(None)
lowerBand.append(None)
else:
scaled_deviation = delta * deviation_item
upperBand.append(forecast_item + scaled_deviation)
lowerBand.append(forecast_item - scaled_deviation)
upperName = "holtWintersConfidenceUpper(%s)" % series.name
lowerName = "holtWintersConfidenceLower(%s)" % series.name
upperSeries = TimeSeries(upperName, forecast.start, forecast.end,
forecast.step, upperBand)
lowerSeries = TimeSeries(lowerName, forecast.start, forecast.end,
forecast.step, lowerBand)
upperSeries.pathExpression = series.pathExpression
lowerSeries.pathExpression = series.pathExpression
results.append(lowerSeries)
results.append(upperSeries)
return results
def holtWintersAberration(requestContext, seriesList, delta=3):
"""
Performs a Holt-Winters forecast using the series as input data and plots
the positive or negative deviation of the series data from the forecast.
"""
results = []
for series in seriesList:
confidenceBands = holtWintersConfidenceBands(requestContext, [series],
delta)
lowerBand = confidenceBands[0]
upperBand = confidenceBands[1]
aberration = list()
for i, actual in enumerate(series):
if series[i] is None:
aberration.append(0)
elif upperBand[i] is not None and series[i] > upperBand[i]:
aberration.append(series[i] - upperBand[i])
elif lowerBand[i] is not None and series[i] < lowerBand[i]:
aberration.append(series[i] - lowerBand[i])
else:
aberration.append(0)
newName = "holtWintersAberration(%s)" % series.name
results.append(TimeSeries(newName, series.start, series.end,
series.step, aberration))
return results
def holtWintersConfidenceArea(requestContext, seriesList, delta=3):
"""
Performs a Holt-Winters forecast using the series as input data and plots
the area between the upper and lower bands of the predicted forecast
deviations.
"""
bands = holtWintersConfidenceBands(requestContext, seriesList, delta)
results = areaBetween(requestContext, bands)
for series in results:
series.name = series.name.replace('areaBetween',
'holtWintersConfidenceArea')
return results
def drawAsInfinite(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList.
If the value is zero, draw the line at 0. If the value is above zero, draw
the line at infinity. If the value is null or less than zero, do not draw
the line.
Useful for displaying on/off metrics, such as exit codes. (0 = success,
anything else = failure.)
Example::
drawAsInfinite(Testing.script.exitCode)
"""
for series in seriesList:
series.options['drawAsInfinite'] = True
series.name = 'drawAsInfinite(%s)' % series.name
return seriesList
def lineWidth(requestContext, seriesList, width):
"""
Takes one metric or a wildcard seriesList, followed by a float F.
Draw the selected metrics with a line width of F, overriding the default
value of 1, or the &lineWidth=X.X parameter.
Useful for highlighting a single metric out of many, or having multiple
line widths in one graph.
Example::
&target=lineWidth(server01.instance01.memory.free,5)
"""
for series in seriesList:
series.options['lineWidth'] = width
return seriesList
def dashed(requestContext, seriesList, dashLength=5):
"""
Takes one metric or a wildcard seriesList, followed by a float F.
Draw the selected metrics with a dotted line with segments of length F
If omitted, the default length of the segments is 5.0
Example::
&target=dashed(server01.instance01.memory.free,2.5)
"""
for series in seriesList:
series.name = 'dashed(%s, %d)' % (series.name, dashLength)
series.options['dashed'] = dashLength
return seriesList
def timeStack(requestContext, seriesList, timeShiftUnit, timeShiftStart,
timeShiftEnd):
"""
Takes one metric or a wildcard seriesList, followed by a quoted string
with the length of time (See ``from / until`` in the render\_api_ for
examples of time formats). Also takes a start multiplier and end
multiplier for the length of time-
Create a seriesList which is composed the orginal metric series stacked
with time shifts starting time shifts from the start multiplier through
the end multiplier.
Useful for looking at history, or feeding into averageSeries or
stddevSeries.
Example::
# create a series for today and each of the previous 7 days
&target=timeStack(Sales.widgets.largeBlue,"1d",0,7)
"""
from .app import evaluateTarget, pathsFromTarget
# Default to negative. parseTimeOffset defaults to +
if timeShiftUnit[0].isdigit():
timeShiftUnit = '-' + timeShiftUnit
delta = parseTimeOffset(timeShiftUnit)
# if len(seriesList) > 1, they will all have the same pathExpression,
# which is all we care about.
series = seriesList[0]
results = []
timeShiftStartint = int(timeShiftStart)
timeShiftEndint = int(timeShiftEnd)
for shft in range(timeShiftStartint, timeShiftEndint):
myContext = requestContext.copy()
innerDelta = delta * shft
myContext['startTime'] = requestContext['startTime'] + innerDelta
myContext['endTime'] = requestContext['endTime'] + innerDelta
paths = pathsFromTarget(series.pathExpression)
for shiftedSeries in evaluateTarget(myContext,
series.pathExpression,
fetchData(myContext, paths)):
shiftedSeries.name = 'timeShift(%s, %s, %s)' % (shiftedSeries.name,
timeShiftUnit,
shft)
shiftedSeries.pathExpression = shiftedSeries.name
shiftedSeries.start = series.start
shiftedSeries.end = series.end
results.append(shiftedSeries)
return results
def timeShift(requestContext, seriesList, timeShift, resetEnd=True):
"""
Takes one metric or a wildcard seriesList, followed by a quoted string
with the length of time (See ``from / until`` in the render\_api_ for
examples of time formats).
Draws the selected metrics shifted in time. If no sign is given, a minus
sign ( - ) is implied which will shift the metric back in time. If a plus
sign ( + ) is given, the metric will be shifted forward in time.
Will reset the end date range automatically to the end of the base stat
unless resetEnd is False. Example case is when you timeshift to last week
and have the graph date range set to include a time in the future, will
limit this timeshift to pretend ending at the current time. If resetEnd is
False, will instead draw full range including future time.
Useful for comparing a metric against itself at a past periods or
correcting data stored at an offset.
Example::
&target=timeShift(Sales.widgets.largeBlue,"7d")
&target=timeShift(Sales.widgets.largeBlue,"-7d")
&target=timeShift(Sales.widgets.largeBlue,"+1h")
"""
from .app import evaluateTarget, pathsFromTarget
# Default to negative. parseTimeOffset defaults to +
if timeShift[0].isdigit():
timeShift = '-' + timeShift
delta = parseTimeOffset(timeShift)
myContext = requestContext.copy()
myContext['startTime'] = requestContext['startTime'] + delta
myContext['endTime'] = requestContext['endTime'] + delta
results = []
if not seriesList:
return results
# if len(seriesList) > 1, they will all have the same pathExpression,
# which is all we care about.
series = seriesList[0]
paths = pathsFromTarget(series.pathExpression)
for shiftedSeries in evaluateTarget(myContext,
series.pathExpression,
fetchData(myContext, paths)):
shiftedSeries.name = 'timeShift(%s, %s)' % (shiftedSeries.name,
timeShift)
if resetEnd:
shiftedSeries.end = series.end
else:
shiftedSeries.end = (
shiftedSeries.end - shiftedSeries.start + series.start)
shiftedSeries.start = series.start
results.append(shiftedSeries)
return results
def timeSlice(requestContext, seriesList, startSliceAt, endSliceAt='now'):
"""
Takes one metric or a wildcard metric, followed by a quoted
string with the time to start the line and another quoted string
with the time to end the line. The start and end times are
inclusive. See ``from / until`` in the render api for examples of
time formats.
Useful for filtering out a part of a series of data from a wider
range of data.
Example::
&target=timeSlice(network.core.port1,"00:00 20140101","11:59 20140630")
&target=timeSlice(network.core.port1,"12:00 20140630","now")
"""
results = []
start = time.mktime(parseATTime(startSliceAt).timetuple())
end = time.mktime(parseATTime(endSliceAt).timetuple())
for slicedSeries in seriesList:
slicedSeries.name = 'timeSlice(%s, %s, %s)' % (slicedSeries.name,
int(start), int(end))
curr = time.mktime(requestContext["startTime"].timetuple())
for i, v in enumerate(slicedSeries):
if v is None or curr < start or curr > end:
slicedSeries[i] = None
curr += slicedSeries.step
results.append(slicedSeries)
return results
def constantLine(requestContext, value):
"""
Takes a float F.
Draws a horizontal line at value F across the graph.
Example::
&target=constantLine(123.456)
"""
start = int(epoch(requestContext['startTime']))
end = int(epoch(requestContext['endTime']))
step = end - start
series = TimeSeries(str(value), start, end, step, [value, value])
series.pathExpression = 'constantLine({0})'.format(value)
return [series]
def aggregateLine(requestContext, seriesList, func='avg'):
"""
Draws a horizontal line based the function applied to the series.
Note: By default, the graphite renderer consolidates data points by
averaging data points over time. If you are using the 'min' or 'max'
function for aggregateLine, this can cause an unusual gap in the
line drawn by this function and the data itself. To fix this, you
should use the consolidateBy() function with the same function
argument you are using for aggregateLine. This will ensure that the
proper data points are retained and the graph should line up
correctly.
Example::
&target=aggregateLine(server.connections.total, 'avg')
"""
t_funcs = {'avg': safeAvg, 'min': safeMin, 'max': safeMax}
if func not in t_funcs:
raise ValueError("Invalid function %s" % func)
results = []
for series in seriesList:
value = t_funcs[func](series)
name = 'aggregateLine(%s,%d)' % (series.pathExpression, value)
[series] = constantLine(requestContext, value)
series.name = name
results.append(series)
return results
def threshold(requestContext, value, label=None, color=None):
"""
Takes a float F, followed by a label (in double quotes) and a color.
(See ``bgcolor`` in the render\_api_ for valid color names & formats.)
Draws a horizontal line at value F across the graph.
Example::
&target=threshold(123.456, "omgwtfbbq", red)
"""
[series] = constantLine(requestContext, value)
if label:
series.name = label
if color:
series.color = color
return [series]
def transformNull(requestContext, seriesList, default=0):
"""
Takes a metric or wild card seriesList and an optional value
to transform Nulls to. Default is 0. This method compliments
drawNullAsZero flag in graphical mode but also works in text only
mode.
Example::
&target=transformNull(webapp.pages.*.views,-1)
This would take any page that didn't have values and supply negative 1 as
a default. Any other numeric value may be used as well.
"""
def transform(v):
if v is None:
return default
else:
return v
for series in seriesList:
series.name = "transformNull(%s,%g)" % (series.name, default)
series.pathExpression = series.name
values = [transform(v) for v in series]
series.extend(values)
del series[:len(values)]
return seriesList
def isNonNull(requestContext, seriesList):
"""
Takes a metric or wild card seriesList and counts up how many
non-null values are specified. This is useful for understanding
which metrics have data at a given point in time (ie, to count
which servers are alive).
Example::
&target=isNonNull(webapp.pages.*.views)
Returns a seriesList where 1 is specified for non-null values, and
0 is specified for null values.
"""
def transform(v):
if v is None:
return 0
else:
return 1
for series in seriesList:
series.name = "isNonNull(%s)" % (series.name)
series.pathExpression = series.name
values = [transform(v) for v in series]
series.extend(values)
del series[:len(values)]
return seriesList
def identity(requestContext, name, step=60):
"""
Identity function:
Returns datapoints where the value equals the timestamp of the datapoint.
Useful when you have another series where the value is a timestamp, and
you want to compare it to the time of the datapoint, to render an age
Example::
&target=identity("The.time.series")
This would create a series named "The.time.series" that contains points
where x(t) == t.
Accepts optional second argument as 'step' parameter (default step is
60 sec)
"""
start = int(epoch(requestContext["startTime"]))
end = int(epoch(requestContext["endTime"]))
values = range(start, end, step)
series = TimeSeries(name, start, end, step, values)
series.pathExpression = 'identity("%s")' % name
return [series]
def countSeries(requestContext, *seriesLists):
"""
Draws a horizontal line representing the number of nodes found in the
seriesList.
Example::
&target=countSeries(carbon.agents.*.*)
"""
if not seriesLists or not any(seriesLists):
return []
seriesList, start, end, step = normalize(seriesLists)
name = "countSeries(%s)" % formatPathExpressions(seriesList)
values = (int(len(row)) for row in zip_longest(*seriesList))
series = TimeSeries(name, start, end, step, values)
series.pathExpression = name
return [series]
def group(requestContext, *seriesLists):
"""
Takes an arbitrary number of seriesLists and adds them to a single
seriesList. This is used to pass multiple seriesLists to a function which
only takes one.
"""
seriesGroup = []
for s in seriesLists:
seriesGroup.extend(s)
return seriesGroup
def mapSeries(requestContext, seriesList, mapNode):
"""
Short form: ``map()``.
Takes a seriesList and maps it to a list of sub-seriesList. Each
sub-seriesList has the given mapNode in common.
Example (note: This function is not very useful alone. It should be used
with :py:func:`reduceSeries`)::
mapSeries(servers.*.cpu.*,1) =>
[
servers.server1.cpu.*,
servers.server2.cpu.*,
...
servers.serverN.cpu.*
]
"""
metaSeries = {}
keys = []
for series in seriesList:
key = series.name.split(".")[mapNode]
if key not in metaSeries:
metaSeries[key] = [series]
keys.append(key)
else:
metaSeries[key].append(series)
return [metaSeries[k] for k in keys]
def reduceSeries(requestContext, seriesLists, reduceFunction, reduceNode,
*reduceMatchers):
"""
Short form: ``reduce()``.
Takes a list of seriesLists and reduces it to a list of series by means of
the reduceFunction.
Reduction is performed by matching the reduceNode in each series against
the list of reduceMatchers. The each series is then passed to the
reduceFunction as arguments in the order given by reduceMatchers. The
reduceFunction should yield a single series.
The resulting list of series are aliased so that they can easily be
nested in other functions.
**Example**: Map/Reduce asPercent(bytes_used,total_bytes) for each server.
Assume that metrics in the form below exist::
servers.server1.disk.bytes_used
servers.server1.disk.total_bytes
servers.server2.disk.bytes_used
servers.server2.disk.total_bytes
servers.server3.disk.bytes_used
servers.server3.disk.total_bytes
...
servers.serverN.disk.bytes_used
servers.serverN.disk.total_bytes
To get the percentage of disk used for each server::
reduceSeries(mapSeries(servers.*.disk.*,1),
"asPercent",3,"bytes_used","total_bytes") =>
alias(asPercent(servers.server1.disk.bytes_used,
servers.server1.disk.total_bytes),
"servers.server1.disk.reduce.asPercent"),
alias(asPercent(servers.server2.disk.bytes_used,
servers.server2.disk.total_bytes),
"servers.server2.disk.reduce.asPercent"),
...
alias(asPercent(servers.serverN.disk.bytes_used,
servers.serverN.disk.total_bytes),
"servers.serverN.disk.reduce.asPercent")
In other words, we will get back the following metrics::
servers.server1.disk.reduce.asPercent,
servers.server2.disk.reduce.asPercent,
...
servers.serverN.disk.reduce.asPercent
.. seealso:: :py:func:`mapSeries`
"""
metaSeries = {}
keys = []
for seriesList in seriesLists:
for series in seriesList:
nodes = series.name.split('.')
node = nodes[reduceNode]
reduceSeriesName = '.'.join(
nodes[0:reduceNode]) + '.reduce.' + reduceFunction
if node in reduceMatchers:
if reduceSeriesName not in metaSeries:
metaSeries[reduceSeriesName] = [None] * len(reduceMatchers)
keys.append(reduceSeriesName)
i = reduceMatchers.index(node)
metaSeries[reduceSeriesName][i] = series
for key in keys:
metaSeries[key] = app.functions[reduceFunction](
requestContext, *[[s] for s in metaSeries[key]])[0]
metaSeries[key].name = key
return [metaSeries[key] for key in keys]
def groupByNode(requestContext, seriesList, nodeNum, callback):
"""
Takes a serieslist and maps a callback to subgroups within as defined by a
common node.
Example::
&target=groupByNode(ganglia.by-function.*.*.cpu.load5,2,"sumSeries")
Would return multiple series which are each the result of applying the
"sumSeries" function to groups joined on the second node (0 indexed)
resulting in a list of targets like::
sumSeries(ganglia.by-function.server1.*.cpu.load5),
sumSeries(ganglia.by-function.server2.*.cpu.load5),...
"""
from .app import app
metaSeries = {}
keys = []
for series in seriesList:
key = series.name.split(".")[nodeNum]
if key not in metaSeries:
metaSeries[key] = [series]
keys.append(key)
else:
metaSeries[key].append(series)
for key in metaSeries.keys():
metaSeries[key] = app.functions[callback](requestContext,
metaSeries[key])[0]
metaSeries[key].name = key
return [metaSeries[key] for key in keys]
def exclude(requestContext, seriesList, pattern):
"""
Takes a metric or a wildcard seriesList, followed by a regular expression
in double quotes. Excludes metrics that match the regular expression.
Example::
&target=exclude(servers*.instance*.threads.busy,"server02")
"""
regex = re.compile(pattern)
return [s for s in seriesList if not regex.search(s.name)]
def grep(requestContext, seriesList, pattern):
"""
Takes a metric or a wildcard seriesList, followed by a regular expression
in double quotes. Excludes metrics that don't match the regular
expression.
Example::
&target=grep(servers*.instance*.threads.busy,"server02")
"""
regex = re.compile(pattern)
return [s for s in seriesList if regex.search(s.name)]
def smartSummarize(requestContext, seriesList, intervalString, func='sum'):
"""
Smarter experimental version of summarize.
"""
from .app import evaluateTarget, pathsFromTarget
results = []
delta = parseTimeOffset(intervalString)
interval = to_seconds(delta)
# Adjust the start time to fit an entire day for intervals >= 1 day
requestContext = requestContext.copy()
tzinfo = requestContext['tzinfo']
s = requestContext['startTime']
if interval >= DAY:
requestContext['startTime'] = datetime(s.year, s.month, s.day,
tzinfo=tzinfo)
elif interval >= HOUR:
requestContext['startTime'] = datetime(s.year, s.month, s.day, s.hour,
tzinfo=tzinfo)
elif interval >= MINUTE:
requestContext['startTime'] = datetime(s.year, s.month, s.day, s.hour,
s.minute, tzinfo=tzinfo)
paths = []
for series in seriesList:
paths.extend(pathsFromTarget(series.pathExpression))
data_store = fetchData(requestContext, paths)
for i, series in enumerate(seriesList):
# XXX: breaks with summarize(metric.{a,b})
# each series.pathExpression == metric.{a,b}
newSeries = evaluateTarget(requestContext,
series.pathExpression,
data_store)[0]
series[0:len(series)] = newSeries
series.start = newSeries.start
series.end = newSeries.end
series.step = newSeries.step
for series in seriesList:
buckets = {} # {timestamp: [values]}
timestamps = range(int(series.start), int(series.end),
int(series.step))
datapoints = zip_longest(timestamps, series)
# Populate buckets
for timestamp, value in datapoints:
# ISSUE: Sometimes there is a missing timestamp in datapoints when
# running a smartSummary
if not timestamp:
continue
bucketInterval = int((timestamp - series.start) / interval)
if bucketInterval not in buckets:
buckets[bucketInterval] = []
if value is not None:
buckets[bucketInterval].append(value)
newValues = []
for timestamp in range(series.start, series.end, interval):
bucketInterval = int((timestamp - series.start) / interval)
bucket = buckets.get(bucketInterval, [])
if bucket:
if func == 'avg':
newValues.append(float(sum(bucket)) / float(len(bucket)))
elif func == 'last':
newValues.append(bucket[len(bucket)-1])
elif func == 'max':
newValues.append(max(bucket))
elif func == 'min':
newValues.append(min(bucket))
else:
newValues.append(sum(bucket))
else:
newValues.append(None)
newName = "smartSummarize(%s, \"%s\", \"%s\")" % (series.name,
intervalString,
func)
alignedEnd = series.start + (bucketInterval * interval) + interval
newSeries = TimeSeries(newName, series.start, alignedEnd, interval,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def summarize(requestContext, seriesList, intervalString, func='sum',
alignToFrom=False):
"""
Summarize the data into interval buckets of a certain size.
By default, the contents of each interval bucket are summed together.
This is useful for counters where each increment represents a discrete
event and retrieving a "per X" value requires summing all the events in
that interval.
Specifying 'avg' instead will return the mean for each bucket, which can
be more useful when the value is a gauge that represents a certain value
in time.
'max', 'min' or 'last' can also be specified.
By default, buckets are calculated by rounding to the nearest interval.
This works well for intervals smaller than a day. For example, 22:32 will
end up in the bucket 22:00-23:00 when the interval=1hour.
Passing alignToFrom=true will instead create buckets starting at the from
time. In this case, the bucket for 22:32 depends on the from time. If
from=6:30 then the 1hour bucket for 22:32 is 22:30-23:30.
Example::
# total errors per hour
&target=summarize(counter.errors, "1hour")
# new users per week
&target=summarize(nonNegativeDerivative(gauge.num_users), "1week")
# average queue size per hour
&target=summarize(queue.size, "1hour", "avg")
# maximum queue size during each hour
&target=summarize(queue.size, "1hour", "max")
# 2010 Q1-4
&target=summarize(metric, "13week", "avg", true)&from=midnight+20100101
"""
results = []
delta = parseTimeOffset(intervalString)
interval = to_seconds(delta)
for series in seriesList:
buckets = {}
timestamps = range(int(series.start), int(series.end) + 1,
int(series.step))
datapoints = zip_longest(timestamps, series)
for timestamp, value in datapoints:
if timestamp is None:
continue
if alignToFrom:
bucketInterval = int((timestamp - series.start) / interval)
else:
bucketInterval = timestamp - (timestamp % interval)
if bucketInterval not in buckets:
buckets[bucketInterval] = []
if value is not None:
buckets[bucketInterval].append(value)
if alignToFrom:
newStart = series.start
newEnd = series.end
else:
newStart = series.start - (series.start % interval)
newEnd = series.end - (series.end % interval) + interval
newValues = []
for timestamp in range(newStart, newEnd, interval):
if alignToFrom:
newEnd = timestamp
bucketInterval = int((timestamp - series.start) / interval)
else:
bucketInterval = timestamp - (timestamp % interval)
bucket = buckets.get(bucketInterval, [])
if bucket:
if func == 'avg':
newValues.append(float(sum(bucket)) / float(len(bucket)))
elif func == 'last':
newValues.append(bucket[len(bucket)-1])
elif func == 'max':
newValues.append(max(bucket))
elif func == 'min':
newValues.append(min(bucket))
else:
newValues.append(sum(bucket))
else:
newValues.append(None)
if alignToFrom:
newEnd += interval
newName = "summarize(%s, \"%s\", \"%s\"%s)" % (
series.name, intervalString, func, alignToFrom and ", true" or "")
newSeries = TimeSeries(newName, newStart, newEnd, interval, newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def hitcount(requestContext, seriesList, intervalString,
alignToInterval=False):
"""
Estimate hit counts from a list of time series.
This function assumes the values in each time series represent
hits per second. It calculates hits per some larger interval
such as per day or per hour. This function is like summarize(),
except that it compensates automatically for different time scales
(so that a similar graph results from using either fine-grained
or coarse-grained records) and handles rarely-occurring events
gracefully.
"""
from .app import evaluateTarget, pathsFromTarget
results = []
delta = parseTimeOffset(intervalString)
interval = to_seconds(delta)
if alignToInterval:
requestContext = requestContext.copy()
s = requestContext['startTime']
if interval >= DAY:
requestContext['startTime'] = datetime(s.year, s.month, s.day)
elif interval >= HOUR:
requestContext['startTime'] = datetime(s.year, s.month, s.day,
s.hour)
elif interval >= MINUTE:
requestContext['startTime'] = datetime(s.year, s.month, s.day,
s.hour, s.minute)
# Gather all paths first, then the data
paths = []
for series in seriesList:
paths.extend(pathsFromTarget(series.pathExpression))
data_store = fetchData(requestContext, paths)
for i, series in enumerate(seriesList):
newSeries = evaluateTarget(requestContext,
series.pathExpression,
data_store)[0]
intervalCount = int((series.end - series.start) / interval)
series[0:len(series)] = newSeries
series.start = newSeries.start
series.end = newSeries.start + (
intervalCount * interval) + interval
series.step = newSeries.step
for series in seriesList:
step = int(series.step)
bucket_count = int(math.ceil(
float(series.end - series.start) / interval))
buckets = [[] for _ in range(bucket_count)]
newStart = int(series.end - bucket_count * interval)
for i, value in enumerate(series):
if value is None:
continue
start_time = int(series.start + i * step)
start_bucket, start_mod = divmod(start_time - newStart, interval)
end_time = start_time + step
end_bucket, end_mod = divmod(end_time - newStart, interval)
if end_bucket >= bucket_count:
end_bucket = bucket_count - 1
end_mod = interval
if start_bucket == end_bucket:
# All of the hits go to a single bucket.
if start_bucket >= 0:
buckets[start_bucket].append(value * (end_mod - start_mod))
else:
# Spread the hits among 2 or more buckets.
if start_bucket >= 0:
buckets[start_bucket].append(
value * (interval - start_mod))
hits_per_bucket = value * interval
for j in range(start_bucket + 1, end_bucket):
buckets[j].append(hits_per_bucket)
if end_mod > 0:
buckets[end_bucket].append(value * end_mod)
newValues = []
for bucket in buckets:
if bucket:
newValues.append(sum(bucket))
else:
newValues.append(None)
newName = 'hitcount(%s, "%s"%s)' % (series.name, intervalString,
alignToInterval and ", true" or "")
newSeries = TimeSeries(newName, newStart, series.end, interval,
newValues)
newSeries.pathExpression = newName
results.append(newSeries)
return results
def sinFunction(requestContext, name, amplitude=1, step=60):
"""
Short Alias: sin()
Just returns the sine of the current time. The optional amplitude parameter
changes the amplitude of the wave.
Example::
&target=sin("The.time.series", 2)
This would create a series named "The.time.series" that contains sin(x)*2.
A third argument can be provided as a step parameter (default is 60 secs).
"""
delta = timedelta(seconds=step)
when = requestContext["startTime"]
values = []
while when < requestContext["endTime"]:
values.append(math.sin(epoch(when))*amplitude)
when += delta
series = TimeSeries(
name, int(epoch(requestContext["startTime"])),
int(epoch(requestContext["endTime"])),
step, values)
series.pathExpression = 'sin({0})'.format(name)
return [series]
def removeEmptySeries(requestContext, seriesList):
"""
Takes one metric or a wildcard seriesList. Out of all metrics
passed, draws only the metrics with not empty data.
Example::
&target=removeEmptySeries(server*.instance*.threads.busy)
Draws only live servers with not empty data.
"""
return [series for series in seriesList if not_empty(series)]
def randomWalkFunction(requestContext, name, step=60):
"""
Short Alias: randomWalk()
Returns a random walk starting at 0. This is great for testing when there
is no real data in whisper.
Example::
&target=randomWalk("The.time.series")
This would create a series named "The.time.series" that contains points
where x(t) == x(t-1)+random()-0.5, and x(0) == 0.
Accepts an optional second argument as step parameter (default step is
60 sec).
"""
delta = timedelta(seconds=step)
when = requestContext["startTime"]
values = []
current = 0
while when < requestContext["endTime"]:
values.append(current)
current += random.random() - 0.5
when += delta
return [TimeSeries(
name, int(epoch(requestContext["startTime"])),
int(epoch(requestContext["endTime"])),
step, values)]
def pieAverage(requestContext, series):
return safeAvg(series)
def pieMaximum(requestContext, series):
return safeMax(series)
def pieMinimum(requestContext, series):
return safeMin(series)
PieFunctions = {
'average': pieAverage,
'maximum': pieMaximum,
'minimum': pieMinimum,
}
SeriesFunctions = {
# Combine functions
'sumSeries': sumSeries,
'sum': sumSeries,
'multiplySeries': multiplySeries,
'averageSeries': averageSeries,
'stddevSeries': stddevSeries,
'avg': averageSeries,
'sumSeriesWithWildcards': sumSeriesWithWildcards,
'averageSeriesWithWildcards': averageSeriesWithWildcards,
'multiplySeriesWithWildcards': multiplySeriesWithWildcards,
'minSeries': minSeries,
'maxSeries': maxSeries,
'rangeOfSeries': rangeOfSeries,
'percentileOfSeries': percentileOfSeries,
'countSeries': countSeries,
'weightedAverage': weightedAverage,
# Transform functions
'scale': scale,
'invert': invert,
'scaleToSeconds': scaleToSeconds,
'offset': offset,
'offsetToZero': offsetToZero,
'derivative': derivative,
'perSecond': perSecond,
'integral': integral,
'nonNegativeDerivative': nonNegativeDerivative,
'log': logarithm,
'timeStack': timeStack,
'timeShift': timeShift,
'timeSlice': timeSlice,
'summarize': summarize,
'smartSummarize': smartSummarize,
'hitcount': hitcount,
'absolute': absolute,
# Calculate functions
'movingAverage': movingAverage,
'movingMedian': movingMedian,
'stdev': stdev,
'holtWintersForecast': holtWintersForecast,
'holtWintersConfidenceBands': holtWintersConfidenceBands,
'holtWintersConfidenceArea': holtWintersConfidenceArea,
'holtWintersAberration': holtWintersAberration,
'asPercent': asPercent,
'pct': asPercent,
'diffSeries': diffSeries,
'divideSeries': divideSeries,
# Series Filter functions
'mostDeviant': mostDeviant,
'highestCurrent': highestCurrent,
'lowestCurrent': lowestCurrent,
'highestMax': highestMax,
'currentAbove': currentAbove,
'currentBelow': currentBelow,
'highestAverage': highestAverage,
'lowestAverage': lowestAverage,
'averageAbove': averageAbove,
'averageBelow': averageBelow,
'maximumAbove': maximumAbove,
'minimumAbove': minimumAbove,
'maximumBelow': maximumBelow,
'nPercentile': nPercentile,
'limit': limit,
'sortByTotal': sortByTotal,
'sortByName': sortByName,
'averageOutsidePercentile': averageOutsidePercentile,
'removeBetweenPercentile': removeBetweenPercentile,
'sortByMaxima': sortByMaxima,
'sortByMinima': sortByMinima,
'useSeriesAbove': useSeriesAbove,
'exclude': exclude,
'grep': grep,
'removeEmptySeries': removeEmptySeries,
# Data Filter functions
'removeAbovePercentile': removeAbovePercentile,
'removeAboveValue': removeAboveValue,
'removeBelowPercentile': removeBelowPercentile,
'removeBelowValue': removeBelowValue,
# Special functions
'legendValue': legendValue,
'alias': alias,
'aliasSub': aliasSub,
'aliasByNode': aliasByNode,
'aliasByMetric': aliasByMetric,
'cactiStyle': cactiStyle,
'color': color,
'alpha': alpha,
'cumulative': cumulative,
'consolidateBy': consolidateBy,
'keepLastValue': keepLastValue,
'changed': changed,
'drawAsInfinite': drawAsInfinite,
'secondYAxis': secondYAxis,
'lineWidth': lineWidth,
'dashed': dashed,
'substr': substr,
'group': group,
'map': mapSeries,
'mapSeries': mapSeries,
'reduce': reduceSeries,
'reduceSeries': reduceSeries,
'groupByNode': groupByNode,
'constantLine': constantLine,
'stacked': stacked,
'areaBetween': areaBetween,
'threshold': threshold,
'transformNull': transformNull,
'isNonNull': isNonNull,
'identity': identity,
'aggregateLine': aggregateLine,
# test functions
'time': identity,
"sin": sinFunction,
"randomWalk": randomWalkFunction,
'timeFunction': identity,
"sinFunction": sinFunction,
"randomWalkFunction": randomWalkFunction,
}
from .app import app # noqa
|