1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
import re
import six
from graphite.errors import NormalizeEmptyResultError, InputParameterError
from graphite.functions import SeriesFunction
from graphite.logger import log
from graphite.render.grammar import grammar
from graphite.render.datalib import fetchData, TimeSeries, prefetchData
from graphite.functions.params import validateParams
from django.conf import settings
def evaluateTarget(requestContext, targets):
if not isinstance(targets, list):
targets = [targets]
pathExpressions = extractPathExpressions(requestContext, targets)
prefetchData(requestContext, pathExpressions)
seriesList = []
for target in targets:
if not target:
continue
if isinstance(target, six.string_types):
if not target.strip():
continue
target = grammar.parseString(target)
try:
result = evaluateTokens(requestContext, target)
except InputParameterError as e:
e.setTargets(requestContext.get('targets', []))
e.setSourceIdHeaders(requestContext.get('sourceIdHeaders', {}))
raise
# we have to return a list of TimeSeries objects
if isinstance(result, TimeSeries):
seriesList.append(result)
elif result:
seriesList.extend(result)
return seriesList
def evaluateTokens(requestContext, tokens, replacements=None, pipedArg=None):
if tokens.template:
arglist = dict()
if tokens.template.kwargs:
arglist.update(dict([(kwarg.argname, evaluateScalarTokens(kwarg.args[0])) for kwarg in tokens.template.kwargs]))
if tokens.template.args:
arglist.update(dict([(str(i+1), evaluateScalarTokens(arg)) for i, arg in enumerate(tokens.template.args)]))
if 'template' in requestContext:
arglist.update(requestContext['template'])
return evaluateTokens(requestContext, tokens.template, arglist)
if tokens.expression:
if tokens.expression.pipedCalls.asList():
# when the expression has piped calls, we pop the right-most call and pass the remaining
# expression into it via pipedArg, to get the same result as a nested call
rightMost = tokens.expression.pipedCalls.pop()
return evaluateTokens(requestContext, rightMost, replacements, tokens)
return evaluateTokens(requestContext, tokens.expression, replacements)
if tokens.pathExpression:
expression = tokens.pathExpression
if replacements:
for name in replacements:
if expression == '$'+name:
val = replacements[name]
if not isinstance(val, six.string_types):
return val
elif re.match(r'^-?[\d.]+$', val):
return float(val)
else:
return val
else:
expression = expression.replace('$'+name, str(replacements[name]))
return fetchData(requestContext, expression)
if tokens.call:
if tokens.call.funcname == 'template':
# if template propagates down here, it means the grammar didn't match the invocation
# as tokens.template. this generally happens if you try to pass non-numeric/string args
raise InputParameterError("invalid template() syntax, only string/numeric arguments are allowed")
if tokens.call.funcname == 'seriesByTag':
return fetchData(requestContext, tokens.call.raw)
try:
func = SeriesFunction(tokens.call.funcname)
except KeyError:
raise InputParameterError('Received request for unknown function: {func}'.format(func=tokens.call.funcname))
rawArgs = tokens.call.args or []
if pipedArg is not None:
rawArgs.insert(0, pipedArg)
args = [evaluateTokens(requestContext, arg, replacements) for arg in rawArgs]
requestContext['args'] = rawArgs
kwargs = dict([(kwarg.argname, evaluateTokens(requestContext, kwarg.args[0], replacements))
for kwarg in tokens.call.kwargs])
if hasattr(func, 'params'):
try:
(args, kwargs) = validateParams(tokens.call.funcname, func.params, args, kwargs)
except InputParameterError as e:
e.setSourceIdHeaders(requestContext.get('sourceIdHeaders', {}))
e.setTargets(requestContext.get('targets', []))
e.setFunction(tokens.call.funcname, args, kwargs)
if settings.ENFORCE_INPUT_VALIDATION:
raise
else:
log.warning('Validation Error: %s', str(e))
try:
return func(requestContext, *args, **kwargs)
except NormalizeEmptyResultError:
return []
except InputParameterError as e:
e.setSourceIdHeaders(requestContext.get('sourceIdHeaders', {}))
e.setTargets(requestContext.get('targets', []))
e.setFunction(tokens.call.funcname, args, kwargs)
raise
return evaluateScalarTokens(tokens)
def evaluateScalarTokens(tokens):
if tokens.number:
if tokens.number.integer:
return int(tokens.number.integer)
if tokens.number.float:
return float(tokens.number.float)
if tokens.number.scientific:
return float(tokens.number.scientific[0])
raise InputParameterError("unknown numeric type in target evaluator")
if tokens.string:
return tokens.string[1:-1]
if tokens.boolean:
return tokens.boolean[0] == 'true'
if tokens.none:
return None
if tokens.infinity:
return float('inf')
raise InputParameterError("unknown token in target evaluator")
def extractPathExpressions(requestContext, targets):
# Returns a list of unique pathExpressions found in the targets list
pathExpressions = set()
def extractPathExpression(requestContext, tokens, replacements=None):
if tokens.template:
arglist = dict()
if tokens.template.kwargs:
arglist.update(dict([(kwarg.argname, evaluateScalarTokens(kwarg.args[0])) for kwarg in tokens.template.kwargs]))
if tokens.template.args:
arglist.update(dict([(str(i+1), evaluateScalarTokens(arg)) for i, arg in enumerate(tokens.template.args)]))
if 'template' in requestContext:
arglist.update(requestContext['template'])
extractPathExpression(requestContext, tokens.template, arglist)
elif tokens.expression:
extractPathExpression(requestContext, tokens.expression, replacements)
if tokens.expression.pipedCalls:
for token in tokens.expression.pipedCalls:
extractPathExpression(requestContext, token, replacements)
elif tokens.pathExpression:
expression = tokens.pathExpression
if replacements:
for name in replacements:
if expression != '$'+name:
expression = expression.replace('$'+name, str(replacements[name]))
pathExpressions.add(expression)
elif tokens.call:
# if we're prefetching seriesByTag, pass the entire call back as a path expression
if tokens.call.funcname == 'seriesByTag':
pathExpressions.add(tokens.call.raw)
else:
for a in tokens.call.args:
extractPathExpression(requestContext, a, replacements)
for target in targets:
if not target:
continue
if isinstance(target, six.string_types):
if not target.strip():
continue
target = grammar.parseString(target)
extractPathExpression(requestContext, target)
return list(pathExpressions)
|