File: glyph.py

package info (click to toggle)
graphite-web 1.1.8-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 7,592 kB
  • sloc: javascript: 86,823; python: 11,977; sh: 61; makefile: 50
file content (2021 lines) | stat: -rw-r--r-- 72,853 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
"""Copyright 2008 Orbitz WorldWide

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License."""

import itertools
import math
import re
from datetime import datetime, timedelta

from six.moves import range, zip
from six.moves.urllib.parse import unquote_plus
from six.moves.configparser import SafeConfigParser
from django.conf import settings
import pytz
import six

from graphite.render.datalib import TimeSeries
from graphite.util import json, BytesIO

try:
    import cairocffi as cairo
except ImportError:
    import cairo

INFINITY = float('inf')

colorAliases = {
  'black' : (0,0,0),
  'white' : (255,255,255),
  'blue' : (100,100,255),
  'green' : (0,200,0),
  'red' : (200,00,50),
  'yellow' : (255,255,0),
  'orange' : (255, 165, 0),
  'purple' : (200,100,255),
  'brown' : (150,100,50),
  'cyan' : (0,255,255),
  'aqua' : (0,150,150),
  'gray' : (175,175,175),
  'grey' : (175,175,175),
  'magenta' : (255,0,255),
  'pink' : (255,100,100),
  'gold' : (200,200,0),
  'rose' : (200,150,200),
  'darkblue' : (0,0,255),
  'darkgreen' : (0,255,0),
  'darkred' : (255,0,0),
  'darkgray' : (111,111,111),
  'darkgrey' : (111,111,111),
}

# This gets overridden by graphTemplates.conf
defaultGraphOptions = dict(
  background='white',
  foreground='black',
  majorline='rose',
  minorline='grey',
  linecolors='blue,green,red,purple,brown,yellow,aqua,grey,magenta,pink,gold,rose',
  fontname='Sans',
  fontsize=10,
  fontbold='false',
  fontitalic='false',
)

# X-axis configurations (copied from rrdtool, this technique is evil & ugly but effective)
SEC = 1
MIN = 60
HOUR = MIN * 60
DAY = HOUR * 24
WEEK = DAY * 7
MONTH = DAY * 31
YEAR = DAY * 365

# Set a flag to indicate whether the '%l' option can be used safely.
# On Windows, in particular the %l option in strftime is not supported.
# '%l' can also fail silently in Linux.
# (It is not one of the documented Python formatters).
try:
    if datetime.now().strftime("%a %l%p"):
        percent_l_supported = True
    else:
        percent_l_supported = False
except ValueError:
    percent_l_supported = False

DATE_FORMAT = settings.DATE_FORMAT

xAxisConfigs = (
  dict(seconds=0.00,  minorGridUnit=SEC,  minorGridStep=5,  majorGridUnit=MIN,  majorGridStep=1,  labelUnit=SEC,  labelStep=5,  format="%H:%M:%S", maxInterval=10*MIN),
  dict(seconds=0.07,  minorGridUnit=SEC,  minorGridStep=10, majorGridUnit=MIN,  majorGridStep=1,  labelUnit=SEC,  labelStep=10, format="%H:%M:%S", maxInterval=20*MIN),
  dict(seconds=0.14,  minorGridUnit=SEC,  minorGridStep=15, majorGridUnit=MIN,  majorGridStep=1,  labelUnit=SEC,  labelStep=15, format="%H:%M:%S", maxInterval=30*MIN),
  dict(seconds=0.27,  minorGridUnit=SEC,  minorGridStep=30, majorGridUnit=MIN,  majorGridStep=2,  labelUnit=MIN,  labelStep=1,  format="%H:%M", maxInterval=2*HOUR),
  dict(seconds=0.5,   minorGridUnit=MIN,  minorGridStep=1,  majorGridUnit=MIN,  majorGridStep=2,  labelUnit=MIN,  labelStep=1,  format="%H:%M", maxInterval=2*HOUR),
  dict(seconds=1.2,   minorGridUnit=MIN,  minorGridStep=1,  majorGridUnit=MIN,  majorGridStep=4,  labelUnit=MIN,  labelStep=2,  format="%H:%M", maxInterval=3*HOUR),
  dict(seconds=2,     minorGridUnit=MIN,  minorGridStep=1,  majorGridUnit=MIN,  majorGridStep=10, labelUnit=MIN,  labelStep=5,  format="%H:%M", maxInterval=6*HOUR),
  dict(seconds=5,     minorGridUnit=MIN,  minorGridStep=2,  majorGridUnit=MIN,  majorGridStep=10, labelUnit=MIN,  labelStep=10, format="%H:%M", maxInterval=12*HOUR),
  dict(seconds=10,    minorGridUnit=MIN,  minorGridStep=5,  majorGridUnit=MIN,  majorGridStep=20, labelUnit=MIN,  labelStep=20, format="%H:%M", maxInterval=1*DAY),
  dict(seconds=30,    minorGridUnit=MIN,  minorGridStep=10, majorGridUnit=HOUR, majorGridStep=1,  labelUnit=HOUR, labelStep=1,  format="%H:%M", maxInterval=2*DAY),
  dict(seconds=60,    minorGridUnit=MIN,  minorGridStep=30, majorGridUnit=HOUR, majorGridStep=2,  labelUnit=HOUR, labelStep=2,  format="%H:%M", maxInterval=2*DAY),
  dict(seconds=100,   minorGridUnit=HOUR, minorGridStep=2,  majorGridUnit=HOUR, majorGridStep=4,  labelUnit=HOUR, labelStep=4,  format="%a %H:%M", maxInterval=6*DAY),
  dict(seconds=255,   minorGridUnit=HOUR, minorGridStep=6,  majorGridUnit=HOUR, majorGridStep=12, labelUnit=HOUR, labelStep=12, format=DATE_FORMAT + " %H:%M", maxInterval=10*DAY),
  dict(seconds=600,   minorGridUnit=HOUR, minorGridStep=6,  majorGridUnit=DAY,  majorGridStep=1,  labelUnit=DAY,  labelStep=1,  format=DATE_FORMAT, maxInterval=14*DAY),
  dict(seconds=1000,   minorGridUnit=HOUR, minorGridStep=12, majorGridUnit=DAY,  majorGridStep=1,  labelUnit=DAY,  labelStep=1,  format=DATE_FORMAT, maxInterval=365*DAY),
  dict(seconds=2000,  minorGridUnit=DAY,  minorGridStep=1,  majorGridUnit=DAY,  majorGridStep=2,  labelUnit=DAY,  labelStep=2,  format=DATE_FORMAT, maxInterval=365*DAY),
  dict(seconds=4000,  minorGridUnit=DAY,  minorGridStep=2,  majorGridUnit=DAY,  majorGridStep=4,  labelUnit=DAY,  labelStep=4,  format=DATE_FORMAT, maxInterval=365*DAY),
  dict(seconds=8000,  minorGridUnit=DAY,  minorGridStep=3.5,majorGridUnit=DAY,  majorGridStep=7,  labelUnit=DAY,  labelStep=7,  format=DATE_FORMAT, maxInterval=365*DAY),
  dict(seconds=16000, minorGridUnit=DAY,  minorGridStep=7,  majorGridUnit=DAY,  majorGridStep=14, labelUnit=DAY,  labelStep=14, format=DATE_FORMAT, maxInterval=365*DAY),
  dict(seconds=32000, minorGridUnit=DAY,  minorGridStep=15, majorGridUnit=DAY,  majorGridStep=30, labelUnit=DAY,  labelStep=30, format=DATE_FORMAT, maxInterval=365*DAY),
  dict(seconds=64000, minorGridUnit=DAY,  minorGridStep=30, majorGridUnit=DAY,  majorGridStep=60, labelUnit=DAY,  labelStep=60, format=DATE_FORMAT + " %Y"),
  dict(seconds=100000,minorGridUnit=DAY,  minorGridStep=60, majorGridUnit=DAY,  majorGridStep=120,labelUnit=DAY,  labelStep=120, format=DATE_FORMAT + " %Y"),
  dict(seconds=120000,minorGridUnit=DAY,  minorGridStep=120,majorGridUnit=DAY,  majorGridStep=240,labelUnit=DAY,  labelStep=240, format=DATE_FORMAT + " %Y"),
)

UnitSystems = {
  'binary': (
    ('Pi', 1024.0**5),
    ('Ti', 1024.0**4),
    ('Gi', 1024.0**3),
    ('Mi', 1024.0**2),
    ('Ki', 1024.0   )),
  'si': (
    ('P', 1000.0**5),
    ('T', 1000.0**4),
    ('G', 1000.0**3),
    ('M', 1000.0**2),
    ('k', 1000.0   )),
  'sec': (
    ('Y', 60*60*24*365),
    ('M', 60*60*24*30),
    ('D', 60*60*24),
    ('H', 60*60),
    ('m', 60)),
  'msec': (
    ('Y', 60*60*24*365*1000),
    ('M', 60*60*24*30*1000),
    ('D', 60*60*24*1000),
    ('H', 60*60*1000),
    ('m', 60*1000),
    ('s', 1000)),
  'none' : [],
}


# We accept values fractionally outside of nominal limits, so that
# rounding errors don't cause weird effects. Since our goal is to
# create plots, and the maximum resolution of the plots is likely to
# be less than 10000 pixels, errors smaller than this size shouldn't
# create any visible effects.
EPSILON = 0.0001


class GraphError(Exception):
  pass


class _AxisTics:
  def __init__(self, minValue, maxValue, unitSystem=None):
    self.minValue = self.checkFinite(minValue, "data value")
    self.minValueSource = 'data'
    self.maxValue = self.checkFinite(maxValue, "data value")
    self.maxValueSource = 'data'
    self.unitSystem = unitSystem

  @staticmethod
  def checkFinite(value, name='value'):
    """Check that value is a finite number.

    If it is, return it. If not, raise GraphError describing the
    problem, using name in the error message.
    """

    if math.isnan(value):
      raise GraphError('Encountered NaN %s' % (name,))
    elif math.isinf(value):
      raise GraphError('Encountered infinite %s' % (name,))
    return value

  @staticmethod
  def chooseDelta(x):
    """Choose a reasonable axis range given that one limit is x.

    Given that end of the axis range (i.e., minValue or maxValue) is
    x, choose a reasonable distance to the other limit.
    """

    if abs(x) < 1.0e-9:
      return 1.0
    else:
      return 0.1 * abs(x)

  def reconcileLimits(self):
    """If self.minValue is not less than self.maxValue, fix the problem.

    If self.minValue is not less than self.maxValue, adjust
    self.minValue and/or self.maxValue (depending on which was not
    specified explicitly by the user) to make self.minValue <
    self.maxValue. If the user specified both limits explicitly, then
    raise GraphError.
    """

    if self.minValue < self.maxValue:
      # The limits are already OK.
      return

    minFixed = (self.minValueSource in ['min'])
    maxFixed = (self.maxValueSource in ['max', 'limit'])

    if minFixed and maxFixed:
      raise GraphError('The %s must be less than the %s' %
                       (self.minValueSource, self.maxValueSource))
    elif minFixed:
      self.maxValue = self.minValue + self.chooseDelta(self.minValue)
    elif maxFixed:
      self.minValue = self.maxValue - self.chooseDelta(self.maxValue)
    else:
      delta = self.chooseDelta(max(abs(self.minValue), abs(self.maxValue)))
      average = (self.minValue + self.maxValue) / 2.0
      self.minValue = average - delta
      self.maxValue = average + delta

  def applySettings(self, axisMin=None, axisMax=None, axisLimit=None):
    """Apply the specified settings to this axis.

    Set self.minValue, self.minValueSource, self.maxValue,
    self.maxValueSource, and self.axisLimit reasonably based on the
    parameters provided.

    Arguments:

    axisMin -- a finite number, or None to choose a round minimum
        limit that includes all of the data.

    axisMax -- a finite number, 'max' to use the maximum value
        contained in the data, or None to choose a round maximum limit
        that includes all of the data.

    axisLimit -- a finite number to use as an upper limit on maxValue,
        or None to impose no upper limit.

    """

    if axisMin is not None and not math.isnan(axisMin):
      self.minValueSource = 'min'
      self.minValue = self.checkFinite(axisMin, 'axis min')

    if axisMax == 'max':
      self.maxValueSource = 'extremum'
    elif axisMax is not None and not math.isnan(axisMax):
      self.maxValueSource = 'max'
      self.maxValue = self.checkFinite(axisMax, 'axis max')

    if axisLimit is None or math.isnan(axisLimit):
      self.axisLimit = None
    elif axisLimit < self.maxValue:
      self.maxValue = self.checkFinite(axisLimit, 'axis limit')
      self.maxValueSource = 'limit'
      # The limit has already been imposed, so there is no need to
      # remember it:
      self.axisLimit = None
    elif math.isinf(axisLimit):
      # It must be positive infinity, which is the same as no limit:
      self.axisLimit = None
    else:
      # We still need to remember axisLimit to avoid rounding top to
      # a value larger than axisLimit:
      self.axisLimit = axisLimit

    self.reconcileLimits()

  def makeLabel(self, value):
    """Create a label for the specified value.

    Create a label string containing the value and its units (if any),
    based on the values of self.step, self.span, and self.unitSystem.

    """

    value, prefix = format_units(value, self.step, system=self.unitSystem)
    span, spanPrefix = format_units(self.span, self.step, system=self.unitSystem)
    if prefix:
      prefix += " "
    if value < 0.1:
      return "%g %s" % (float(value), prefix)
    elif value < 1.0:
      return "%.2f %s" % (float(value), prefix)
    if (span is not None and span > 10) or spanPrefix != prefix:
      if type(value) is float:
        return "%.1f %s" % (value, prefix)
      else:
        return "%d %s" % (int(value), prefix)
    elif span is not None and span > 3:
      return "%.1f %s" % (float(value), prefix)
    elif span is not None and span > 0.1:
      return "%.2f %s" % (float(value), prefix)
    else:
      return "%g %s" % (float(value), prefix)


class _LinearAxisTics(_AxisTics):
  """Axis ticmarks with uniform spacing."""

  def __init__(self, minValue, maxValue, unitSystem=None):
    _AxisTics.__init__(self, minValue, maxValue, unitSystem=unitSystem)
    self.step = None
    self.span = None
    self.binary = None

  def setStep(self, step):
    """Set the size of steps between ticmarks."""

    self.step = self.checkFinite(float(step), 'axis step')

  def generateSteps(self, minStep):
    """Generate allowed steps with step >= minStep in increasing order."""

    self.checkFinite(minStep)

    if self.binary:
      base = 2.0
      mantissas = [1.0]
      exponent = math.floor(math.log(minStep, 2) - EPSILON)
    else:
      base = 10.0
      mantissas = [1.0, 2.0, 5.0]
      exponent = math.floor(math.log10(minStep) - EPSILON)

    while True:
      multiplier = base ** exponent
      for mantissa in mantissas:
        value = mantissa * multiplier
        if value >= minStep * (1.0 - EPSILON):
          yield value
      exponent += 1

  def computeSlop(self, step, divisor):
    """Compute the slop that would result from step and divisor.

    Return the slop, or None if this combination can't cover the full
    range. See chooseStep() for the definition of "slop".

    """

    bottom = step * math.floor(self.minValue / float(step) + EPSILON)
    top = bottom + step * divisor

    if top >= self.maxValue - EPSILON * step:
      return max(top - self.maxValue, self.minValue - bottom)
    else:
      return None

  def chooseStep(self, divisors=None, binary=False):
    """Choose a nice, pretty size for the steps between axis labels.

    Our main constraint is that the number of divisions must be taken
    from the divisors list. We pick a number of divisions and a step
    size that minimizes the amount of whitespace ("slop") that would
    need to be included outside of the range [self.minValue,
    self.maxValue] if we were to push out the axis values to the next
    larger multiples of the step size.

    The minimum step that could possibly cover the variance satisfies

        minStep * max(divisors) >= variance

    or

        minStep = variance / max(divisors)

    It's not necessarily possible to cover the variance with a step
    that size, but we know that any smaller step definitely *cannot*
    cover it. So we can start there.

    For a sufficiently large step size, it is definitely possible to
    cover the variance, but at some point the slop will start growing.
    Let's define the slop to be

        slop = max(minValue - bottom, top - maxValue)

    Then for a given, step size, we know that

        slop >= (1/2) * (step * min(divisors) - variance)

    (the factor of 1/2 is for the best-case scenario that the slop is
    distributed equally on the two sides of the range). So suppose we
    already have a choice that yields bestSlop. Then there is no need
    to choose steps so large that the slop is guaranteed to be larger
    than bestSlop. Therefore, the maximum step size that we need to
    consider is

        maxStep = (2 * bestSlop + variance) / min(divisors)

    """

    self.binary = binary
    if divisors is None:
      divisors = [4,5,6]
    else:
      for divisor in divisors:
        self.checkFinite(divisor, 'divisor')
        if divisor < 1:
          raise GraphError('Divisors must be greater than or equal to one')

    if self.minValue == self.maxValue:
      if self.minValue == 0.0:
        self.maxValue = 1.0
      elif self.minValue < 0.0:
        self.minValue *= 1.1
        self.maxValue *= 0.9
      else:
        self.minValue *= 0.9
        self.maxValue *= 1.1

    variance = self.maxValue - self.minValue

    bestSlop = None
    bestStep = None
    for step in self.generateSteps(variance / float(max(divisors))):
      if bestSlop is not None and step * min(divisors) >= 2 * bestSlop + variance:
        break
      for divisor in divisors:
        slop = self.computeSlop(step, divisor)
        if slop is not None and (bestSlop is None or slop < bestSlop):
          bestSlop = slop
          bestStep = step

    self.step = bestStep

  def chooseLimits(self):
    if self.minValueSource == 'data':
      # Start labels at the greatest multiple of step <= minValue:
      self.bottom = self.step * math.floor(self.minValue / self.step + EPSILON)
    else:
      self.bottom = self.minValue

    if self.maxValueSource == 'data':
      # Extend the top of our graph to the lowest step multiple >= maxValue:
      self.top = self.step * math.ceil(self.maxValue / self.step - EPSILON)
      # ...but never exceed a user-specified limit:
      if self.axisLimit is not None and self.top > self.axisLimit + EPSILON * self.step:
        self.top = self.axisLimit
    else:
      self.top = self.maxValue

    self.span = self.top - self.bottom

    if self.span == 0:
      self.top += 1
      self.span += 1

  def getLabelValues(self):
    if self.step <= 0.0:
      raise GraphError('The step size must be positive')
    if self.span > 1000.0 * self.step:
      # This is insane. Pick something that won't cause trouble:
      self.chooseStep()

    values = []

    start = self.step * math.ceil(self.bottom / self.step - EPSILON)
    i = 0
    while True:
      value = start + i * self.step
      if value > self.top + EPSILON * self.step:
        break
      values.append(value)
      i += 1

    return values


class _LogAxisTics(_AxisTics):
  def __init__(self, minValue, maxValue, unitSystem=None, base=10.0):
    _AxisTics.__init__(self, minValue, maxValue, unitSystem=unitSystem)
    if base <= 1.0:
      raise GraphError('Logarithmic base must be greater than one')
    self.base = self.checkFinite(base, 'log base')
    self.step = None
    self.span = None

  def setStep(self, step):
    # step is ignored for Logarithmic tics:
    self.step = None

  def chooseStep(self, divisors=None, binary=False):
    # step is ignored for Logarithmic tics:
    self.step = None

  def chooseLimits(self):
    if self.minValue <= 0:
      raise GraphError('Logarithmic scale specified with a dataset with a '
                       'minimum value less than or equal to zero')
    self.bottom = math.pow(self.base, math.floor(math.log(self.minValue, self.base)))
    self.top = math.pow(self.base, math.ceil(math.log(self.maxValue, self.base)))

    self.span = self.top - self.bottom

    if self.span == 0:
      self.top *= self.base
      self.span = self.top - self.bottom

  def getLabelValues(self):
    values = []

    value = math.pow(self.base, math.ceil(math.log(self.bottom, self.base) - EPSILON))
    while value < self.top * (1.0 + EPSILON):
       values.append(value)
       value *= self.base

    return values


class Graph:
  customizable = ('width','height','margin','bgcolor','fgcolor',
                 'fontName','fontSize','fontBold','fontItalic',
                 'colorList','template','yAxisSide','outputFormat')

  def __init__(self,**params):
    self.params = params
    self.data = params['data']
    self.dataLeft = []
    self.dataRight = []
    self.secondYAxis = False
    self.width = int( params.get('width',200) )
    self.height = int( params.get('height',200) )
    self.margin = int( params.get('margin',10) )
    self.userTimeZone = params.get('tz')
    self.logBase = params.get('logBase', None)
    self.minorY = int(params.get('minorY', 1))

    if self.logBase:
      if self.logBase == 'e':
        self.logBase = math.e
      elif self.logBase < 1:
        self.logBase = None
        params['logBase'] = None
      else:
        self.logBase = float(self.logBase)

    if self.margin < 0:
      self.margin = 10

    self.setupCairo( params.get('outputFormat','png').lower() )

    self.area = {
      'xmin' : self.margin + 10, # Need extra room when the time is near the left edge
      'xmax' : self.width - self.margin,
      'ymin' : self.margin,
      'ymax' : self.height - self.margin,
    }

    self.loadTemplate( params.get('template','default') )

    opts = self.ctx.get_font_options()
    opts.set_antialias( cairo.ANTIALIAS_NONE )
    self.ctx.set_font_options( opts )

    self.foregroundColor = params.get('fgcolor',self.defaultForeground)
    self.backgroundColor = params.get('bgcolor',self.defaultBackground)
    self.setColor( self.backgroundColor )
    self.drawRectangle( 0, 0, self.width, self.height )

    if 'colorList' in params:
      colorList = unquote_plus( str(params['colorList']) ).split(',')
    else:
      colorList = self.defaultColorList
    self.colors = itertools.cycle( colorList )

    self.drawGraph(**params)

  def setupCairo(self,outputFormat='png'):
    self.outputFormat = outputFormat
    if outputFormat == 'png':
      self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width, self.height)
    elif outputFormat == 'svg':
      self.surfaceData = BytesIO()
      self.surface = cairo.SVGSurface(self.surfaceData, self.width, self.height)
    elif outputFormat == 'pdf':
      self.surfaceData = BytesIO()
      self.surface = cairo.PDFSurface(self.surfaceData, self.width, self.height)
      res_x, res_y = self.surface.get_fallback_resolution()
      self.width = float(self.width / res_x) * 72
      self.height = float(self.height / res_y) * 72
      self.surface.set_size(self.width, self.height)
    self.ctx = cairo.Context(self.surface)

  def setColor(self, value, alpha=1.0, forceAlpha=False):
    if type(value) is tuple and len(value) == 3:
      r,g,b = value
    elif value in colorAliases:
      r,g,b = colorAliases[value]
    elif isinstance(value, six.string_types) and len(value) >= 6:
      s = value
      if s[0] == '#': s = s[1:]
      if s[0:3] == '%23': s = s[3:]
      r,g,b = ( int(s[0:2],base=16), int(s[2:4],base=16), int(s[4:6],base=16) )
      if len(s) == 8 and not forceAlpha:
        alpha = float( int(s[6:8],base=16) ) / 255.0
    elif isinstance(value, int) and len(str(value)) == 6:
      s = str(value)
      r,g,b = ( int(s[0:2],base=16), int(s[2:4],base=16), int(s[4:6],base=16) )
    else:
      raise ValueError("Must specify an RGB 3-tuple, an html color string, or a known color alias!")
    r,g,b = [float(c) / 255.0 for c in (r,g,b)]
    self.ctx.set_source_rgba(r,g,b,alpha)

  def setFont(self, **params):
    p = self.defaultFontParams.copy()
    p.update(params)
    self.ctx.select_font_face(p['name'], p['italic'], p['bold'])
    self.ctx.set_font_size( float(p['size']) )

  def getExtents(self,text=None,fontOptions={}):
    if fontOptions:
      self.setFont(**fontOptions)
    F = self.ctx.font_extents()
    extents = { 'maxHeight' : F[2], 'maxAscent' : F[0], 'maxDescent' : F[1] }
    if text:
      T = self.ctx.text_extents(text)
      extents['width'] = T[4]
      extents['height'] = T[3]
    return extents

  def drawRectangle(self, x, y, w, h, fill=True, dash=False):
    if not fill:
      o = self.ctx.get_line_width() / 2.0 #offset for borders so they are drawn as lines would be
      x += o
      y += o
      w -= o
      h -= o
    self.ctx.rectangle(x,y,w,h)
    if fill:
      self.ctx.fill()
    else:
      if dash:
        self.ctx.set_dash(dash,1)
      else:
        self.ctx.set_dash([],0)
      self.ctx.stroke()

  def drawText(self,text,x,y,font={},color={},align='left',valign='top',border=False,rotate=0):
    if font: self.setFont(**font)
    if color: self.setColor(**color)
    extents = self.getExtents(text)
    angle = math.radians(rotate)
    origMatrix = self.ctx.get_matrix()

    horizontal = {
      'left' : 0,
      'center' : extents['width'] / 2,
      'right' : extents['width'],
    }[align.lower()]
    vertical = {
      'top' : extents['maxAscent'],
      'middle' : extents['maxHeight'] / 2 - extents['maxDescent'],
      'bottom' : -extents['maxDescent'],
      'baseline' : 0,
    }[valign.lower()]

    self.ctx.move_to(x,y)
    self.ctx.rel_move_to( math.sin(angle) * -vertical, math.cos(angle) * vertical)
    self.ctx.rotate(angle)
    self.ctx.rel_move_to( -horizontal, 0 )
    bx, by = self.ctx.get_current_point()
    by -= extents['maxAscent']
    self.ctx.text_path(text)
    self.ctx.fill()
    if border:
      self.drawRectangle(bx, by, extents['width'], extents['maxHeight'], fill=False)
    else:
      self.ctx.set_matrix(origMatrix)

  def drawTitle(self,text):
    self.encodeHeader('title')

    y = self.area['ymin']
    x = self.width / 2
    lineHeight = self.getExtents()['maxHeight']
    for line in text.split('\n'):
      self.drawText(line, x, y, align='center')
      y += lineHeight
    if self.params.get('yAxisSide') == 'right':
      self.area['ymin'] = y
    else:
      self.area['ymin'] = y + self.margin

  def drawLegend(self, elements, unique=False): #elements is [ (name,color,rightSide), (name,color,rightSide), ... ]
    self.encodeHeader('legend')

    if unique:
      # remove duplicate names
      namesSeen = []
      newElements = []
      for e in elements:
        if e[0] not in namesSeen:
          namesSeen.append(e[0])
          newElements.append(e)
      elements = newElements

    # Check if there's enough room to use two columns.
    rightSideLabels = False
    padding = 5
    longestName = sorted([e[0] for e in elements],key=len)[-1]
    testSizeName = longestName + " " + longestName # Double it to check if there's enough room for 2 columns
    testExt = self.getExtents(testSizeName)
    testBoxSize = testExt['maxHeight'] - 1
    testWidth = testExt['width'] + 2 * (testBoxSize + padding)
    if testWidth + 50 < self.width:
      rightSideLabels = True

    if(self.secondYAxis and rightSideLabels):
      extents = self.getExtents(longestName)
      padding = 5
      boxSize = extents['maxHeight'] - 1
      lineHeight = extents['maxHeight'] + 1
      labelWidth = extents['width'] + 2 * (boxSize + padding)
      columns = max(1, math.floor( (self.width - self.area['xmin']) / labelWidth ))
      numRight = len([name for (name,color,rightSide) in elements if rightSide])
      numberOfLines = max(len(elements) - numRight, numRight)
      columns = math.floor(columns / 2.0)
      if columns < 1: columns = 1
      legendHeight = (max(1, (numberOfLines / columns)) * lineHeight) + padding
      self.area['ymax'] -= legendHeight #scoot the drawing area up to fit the legend
      self.ctx.set_line_width(1.0)
      x = self.area['xmin']
      y = self.area['ymax'] + (2 * padding)
      n = 0
      xRight = self.area['xmax'] - self.area['xmin']
      yRight = y
      nRight = 0
      for (name,color,rightSide) in elements:
        self.setColor( color )
        if rightSide:
          nRight += 1
          self.drawRectangle(xRight - padding,yRight,boxSize,boxSize)
          self.setColor( 'darkgrey' )
          self.drawRectangle(xRight - padding,yRight,boxSize,boxSize,fill=False)
          self.setColor( self.foregroundColor )
          self.drawText(name, xRight - boxSize, yRight, align='right')
          xRight -= labelWidth
          if nRight % columns == 0:
            xRight = self.area['xmax'] - self.area['xmin']
            yRight += lineHeight
        else:
          n += 1
          self.drawRectangle(x,y,boxSize,boxSize)
          self.setColor( 'darkgrey' )
          self.drawRectangle(x,y,boxSize,boxSize,fill=False)
          self.setColor( self.foregroundColor )
          self.drawText(name, x + boxSize + padding, y, align='left')
          x += labelWidth
          if n % columns == 0:
            x = self.area['xmin']
            y += lineHeight
    else:
      extents = self.getExtents(longestName)
      boxSize = extents['maxHeight'] - 1
      lineHeight = extents['maxHeight'] + 1
      labelWidth = extents['width'] + 2 * (boxSize + padding)
      columns = math.floor( self.width / labelWidth )
      if columns < 1: columns = 1
      numberOfLines = math.ceil( float(len(elements)) / columns )
      legendHeight = (numberOfLines * lineHeight) + padding
      self.area['ymax'] -= legendHeight #scoot the drawing area up to fit the legend
      self.ctx.set_line_width(1.0)
      x = self.area['xmin']
      y = self.area['ymax'] + (2 * padding)
      for i,(name,color,rightSide) in enumerate(elements):
        if rightSide:
          self.setColor( color )
          self.drawRectangle(x + labelWidth + padding,y,boxSize,boxSize)
          self.setColor( 'darkgrey' )
          self.drawRectangle(x + labelWidth + padding,y,boxSize,boxSize,fill=False)
          self.setColor( self.foregroundColor )
          self.drawText(name, x + labelWidth, y, align='right')
          x += labelWidth
        else:
          self.setColor( color )
          self.drawRectangle(x,y,boxSize,boxSize)
          self.setColor( 'darkgrey' )
          self.drawRectangle(x,y,boxSize,boxSize,fill=False)
          self.setColor( self.foregroundColor )
          self.drawText(name, x + boxSize + padding, y, align='left')
          x += labelWidth
        if (i + 1) % columns == 0:
          x = self.area['xmin']
          y += lineHeight

  def encodeHeader(self,text):
    """
    Puts some metadata in the generated svg xml that is not inside the frame.
    This can be used to manipulate the svg later on with a framework like d3.
    """
    if self.outputFormat != 'svg':
      return
    self.ctx.save()
    self.setColor( self.backgroundColor )
    self.ctx.move_to(-88,-88) # identifier
    for i, char in enumerate(text):
      self.ctx.line_to(-ord(char), -i-1)
    self.ctx.stroke()
    self.ctx.restore()

  def loadTemplate(self,template):
    conf = SafeConfigParser()
    if conf.read(settings.GRAPHTEMPLATES_CONF):
      defaults = defaultGraphOptions
      # If a graphTemplates.conf exists, read in
      # the values from it, but make sure that
      # all of the default values properly exist
      defaults.update(dict(conf.items('default')))
      if template in conf.sections():
        opts = dict( conf.items(template) )
      else:
        opts = defaults
    else:
      opts = defaults = defaultGraphOptions

    self.defaultBackground = opts.get('background', defaults['background'])
    self.defaultForeground = opts.get('foreground', defaults['foreground'])
    self.defaultMajorGridLineColor = opts.get('majorline', defaults['majorline'])
    self.defaultMinorGridLineColor = opts.get('minorline', defaults['minorline'])
    self.defaultColorList = [c.strip() for c in opts.get('linecolors', defaults['linecolors']).split(',')]
    fontName = opts.get('fontname', defaults['fontname'])
    fontSize = float( opts.get('fontsize', defaults['fontsize']) )
    fontBold = opts.get('fontbold', defaults['fontbold']).lower() == 'true'
    fontItalic = opts.get('fontitalic', defaults['fontitalic']).lower() == 'true'
    self.defaultFontParams = {
      'name' : self.params.get('fontName',fontName),
      'size' : int( self.params.get('fontSize',fontSize) ),
      'bold' : self.params.get('fontBold',fontBold),
      'italic' : self.params.get('fontItalic',fontItalic),
    }

  def output(self, fileObj):
    if self.outputFormat == 'png':
      self.surface.write_to_png(fileObj)
    elif self.outputFormat == 'pdf':
      self.surface.finish()
      pdfData = self.surfaceData.getvalue()
      self.surfaceData.close()
      fileObj.write(pdfData)
    else:
      if hasattr(self, 'startTime'):
        hasData = True
        metaData = {
          'x': {
            'start': self.startTime,
            'end': self.endTime
          },
          'options': {
            'lineWidth': self.lineWidth
          },
          'font': self.defaultFontParams,
          'area': self.area,
          'series': []
        }

        if not self.secondYAxis:
          metaData['y'] = {
            'top': self.yTop,
            'bottom': self.yBottom,
            'step': self.yStep,
            'labels': self.yLabels,
            'labelValues': self.yLabelValues
          }

        for series in self.data:
          if 'stacked' not in series.options:
            metaData['series'].append({
              'name': series.name,
              'start': series.start,
              'end': series.end,
              'step': series.step,
              'valuesPerPoint': series.valuesPerPoint,
              'color': series.color,
              'data': series,
              'options': series.options
            })
      else:
        hasData = False
        metaData = { }

      self.surface.finish()
      svgData = self.surfaceData.getvalue().decode('utf-8')
      self.surfaceData.close()

      svgData = svgData.replace('pt"', 'px"', 2)  # we expect height/width in pixels, not points
      svgData = svgData.replace('</svg>\n', '', 1)
      svgData = svgData.replace('</defs>\n<g', '</defs>\n<g class="graphite"', 1)

      if hasData:
        # We encode headers using special paths with d^="M -88 -88"
        # Find these, and turn them into <g> wrappers instead
        def onHeaderPath(match):
          name = ''
          for char in re.findall(r'L -(\d+) -\d+', match.group(1)):
            name += chr(int(char))
          return '</g><g data-header="true" class="%s">' % name
        (svgData, subsMade) = re.subn(r'<path.+?d="M -88 -88 (.+?)"/>', onHeaderPath, svgData)

        # Replace the first </g><g> with <g>, and close out the last </g> at the end
        svgData = svgData.replace('</g><g data-header', '<g data-header', 1)
        if subsMade > 0:
          svgData += '</g>'
        svgData = svgData.replace(' data-header="true"', '')

      fileObj.write(svgData.encode('utf-8'))
      fileObj.write(("""<script>
  <![CDATA[
    metadata = %s
  ]]>
</script>
</svg>""" % json.dumps(metaData)).encode('utf-8'))


class LineGraph(Graph):
  customizable = Graph.customizable + \
                 ('title','vtitle','lineMode','lineWidth','hideLegend',
                  'hideAxes','minXStep','hideGrid','majorGridLineColor',
                  'minorGridLineColor','thickness','min','max',
                  'graphOnly','yMin','yMax','yLimit','yStep','areaMode',
                  'areaAlpha','drawNullAsZero','tz', 'yAxisSide','pieMode',
                  'yUnitSystem', 'logBase','yMinLeft','yMinRight','yMaxLeft',
                  'yMaxRight', 'yLimitLeft', 'yLimitRight', 'yStepLeft',
                  'yStepRight', 'rightWidth', 'rightColor', 'rightDashed',
                  'leftWidth', 'leftColor', 'leftDashed', 'xFormat', 'minorY',
                  'hideYAxis', 'uniqueLegend', 'vtitleRight', 'yDivisors',
                  'connectedLimit', 'hideXAxis', 'hideNullFromLegend')
  validLineModes = ('staircase','slope','connected')
  validAreaModes = ('none','first','all','stacked')
  validPieModes = ('maximum', 'minimum', 'average')

  def drawGraph(self,**params):
    # Make sure we've got datapoints to draw
    if self.data:
      startTime = min([series.start for series in self.data])
      endTime = max([series.end for series in self.data])
      timeRange = endTime - startTime
    else:
      timeRange = None

    if not timeRange:
      x = self.width / 2
      y = self.height / 2
      self.setColor('red')
      self.setFont(size=math.log(self.width * self.height) )
      self.drawText("No Data", x, y, align='center')
      return

    # Determine if we're doing a 2 y-axis graph.
    for series in self.data:
      if 'secondYAxis' in series.options:
        self.dataRight.append(series)
      else:
        self.dataLeft.append(series)
    if len(self.dataRight) > 0:
      self.secondYAxis = True

    # API compatibility hacks
    if params.get('graphOnly',False):
      params['hideLegend'] = True
      params['hideGrid'] = True
      params['hideAxes'] = True
      params['hideXAxis'] = False
      params['hideYAxis'] = False
      params['yAxisSide'] = 'left'
      params['title'] = ''
      params['vtitle'] = ''
      params['margin'] = 0
      params['tz'] = ''
      self.margin = 0
      self.area['xmin'] = 0
      self.area['xmax'] = self.width
      self.area['ymin'] = 0
      self.area['ymax'] = self.height
    if 'yMin' not in params and 'min' in params:
      params['yMin'] = params['min']
    if 'yMax' not in params and 'max' in params:
      params['yMax'] = params['max']
    if 'lineWidth' not in params and 'thickness' in params:
      params['lineWidth'] = params['thickness']
    if 'yAxisSide' not in params:
      params['yAxisSide'] = 'left'
    if 'yUnitSystem' not in params:
      params['yUnitSystem'] = 'si'
    else:
      params['yUnitSystem'] = six.text_type(params['yUnitSystem']).lower()
      if params['yUnitSystem'] not in UnitSystems:
        params['yUnitSystem'] = 'si'

    self.params = params

    # Don't do any of the special right y-axis stuff if we're drawing 2 y-axes.
    if self.secondYAxis:
      params['yAxisSide'] = 'left'

    # When Y Axis is labeled on the right, we subtract x-axis positions from the max,
    # instead of adding to the minimum
    if self.params.get('yAxisSide') == 'right':
      self.margin = self.width

    # Now to setup our LineGraph specific options
    self.lineWidth = float( params.get('lineWidth', 1.2) )
    self.lineMode = params.get('lineMode','slope').lower()
    self.connectedLimit = params.get("connectedLimit", INFINITY)
    assert self.lineMode in self.validLineModes, "Invalid line mode!"
    self.areaMode = params.get('areaMode','none').lower()
    assert self.areaMode in self.validAreaModes, "Invalid area mode!"
    self.pieMode = params.get('pieMode', 'maximum').lower()
    assert self.pieMode in self.validPieModes, "Invalid pie mode!"

    # Line mode slope does not work (or even make sense) for series that have
    # only one datapoint. So if any series have one datapoint we force staircase mode.
    if self.lineMode == 'slope':
      for series in self.data:
        if len(series) == 1:
          self.lineMode = 'staircase'
          break

    if self.secondYAxis:
      for series in self.data:
        if 'secondYAxis' in series.options:
          if 'rightWidth' in params:
            series.options['lineWidth'] = params['rightWidth']
          if 'rightDashed' in params:
            series.options['dashed'] = params['rightDashed']
          if 'rightColor' in params:
            series.color = params['rightColor']
        else:
          if 'leftWidth' in params:
            series.options['lineWidth'] = params['leftWidth']
          if 'leftDashed' in params:
            series.options['dashed'] = params['leftDashed']
          if 'leftColor' in params:
            series.color = params['leftColor']

    for series in self.data:
      if not hasattr(series, 'color'):
        series.color = next(self.colors)

    titleSize = self.defaultFontParams['size'] + math.floor( math.log(self.defaultFontParams['size']) )
    self.setFont( size=titleSize )
    self.setColor( self.foregroundColor )

    if params.get('title'):
      self.drawTitle( six.text_type( unquote_plus(params['title']) ) )
    if params.get('vtitle'):
      self.drawVTitle( six.text_type( unquote_plus(params['vtitle']) ) )
    if self.secondYAxis and params.get('vtitleRight'):
      self.drawVTitle( six.text_type( unquote_plus(params['vtitleRight']) ), rightAlign=True )
    self.setFont()

    if not params.get('hideLegend', len(self.data) > settings.LEGEND_MAX_ITEMS):
      elements = []
      for series in self.data:
        if series.name:
          if not (params.get('hideNullFromLegend', False) and all(v is None for v in list(series))):
            elements.append((unquote_plus(series.name),series.color,series.options.get('secondYAxis')))
      if len(elements) > 0:
        self.drawLegend(elements, params.get('uniqueLegend', False))

    # Setup axes, labels, and grid
    # First we adjust the drawing area size to fit X-axis labels
    if not self.params.get('hideAxes',False) and not self.params.get('hideXAxis', False):
      self.area['ymax'] -= self.getExtents()['maxAscent'] * 2

    self.startTime = min([series.start for series in self.data])
    if self.lineMode == 'staircase':
      self.endTime = max([series.end for series in self.data])
    else:
      self.endTime = max([(series.end - series.step) for series in self.data])
    self.timeRange = self.endTime - self.startTime

    # Now we consolidate our data points to fit in the currently estimated drawing area
    self.consolidateDataPoints()

    self.encodeHeader('axes')

    # Now its time to fully configure the Y-axis and determine the space required for Y-axis labels
    # Since we'll probably have to squeeze the drawing area to fit the Y labels, we may need to
    # reconsolidate our data points, which in turn means re-scaling the Y axis, this process will
    # repeat until we have accurate Y labels and enough space to fit our data points
    currentXMin = self.area['xmin']
    currentXMax = self.area['xmax']

    if self.secondYAxis:
      self.setupTwoYAxes()
    else:
      self.setupYAxis()
    while currentXMin != self.area['xmin'] or currentXMax != self.area['xmax']: #see if the Y-labels require more space
      self.consolidateDataPoints() #this can cause the Y values to change
      currentXMin = self.area['xmin'] #so let's keep track of the previous Y-label space requirements
      currentXMax = self.area['xmax']
      if self.secondYAxis: #and recalculate their new requirements
        self.setupTwoYAxes()
      else:
        self.setupYAxis()

    # Now that our Y-axis is finalized, let's determine our X labels (this won't affect the drawing area)
    self.setupXAxis()

    if not self.params.get('hideAxes',False):
      self.drawLabels()
      if not self.params.get('hideGrid',False): #hideAxes implies hideGrid
        self.encodeHeader('grid')
        self.drawGridLines()

    # Finally, draw the graph lines
    self.encodeHeader('lines')
    self.drawLines()

  def drawVTitle(self, text, rightAlign=False):
    lineHeight = self.getExtents()['maxHeight']

    if rightAlign:
      self.encodeHeader('vtitleRight')
      x = self.area['xmax'] - lineHeight
      y = self.height / 2
      for line in text.split('\n'):
        self.drawText(line, x, y, align='center', valign='baseline', rotate=90)
        x -= lineHeight
      self.area['xmax'] = x - self.margin - lineHeight
    else:
      self.encodeHeader('vtitle')
      x = self.area['xmin'] + lineHeight
      y = self.height / 2
      for line in text.split('\n'):
        self.drawText(line, x, y, align='center', valign='baseline', rotate=270)
        x += lineHeight
      self.area['xmin'] = x + self.margin + lineHeight

  def getYCoord(self, value, side=None):
    if "left" == side:
      yLabelValues = self.yLabelValuesL
      yTop = self.yTopL
      yBottom = self.yBottomL
    elif "right" == side:
      yLabelValues = self.yLabelValuesR
      yTop = self.yTopR
      yBottom = self.yBottomR
    else:
      yLabelValues = self.yLabelValues
      yTop = self.yTop
      yBottom = self.yBottom

    try:
      highestValue = max(yLabelValues)
      lowestValue = min(yLabelValues)
    except ValueError:
      highestValue = yTop
      lowestValue = yBottom

    pixelRange = self.area['ymax'] - self.area['ymin']

    relativeValue = value - lowestValue
    valueRange = highestValue - lowestValue

    if self.logBase:
        if value <= 0:
            return None
        relativeValue = math.log(value, self.logBase) - math.log(lowestValue, self.logBase)
        valueRange = math.log(highestValue, self.logBase) - math.log(lowestValue, self.logBase)

    pixelToValueRatio = pixelRange / valueRange
    valueInPixels = pixelToValueRatio * relativeValue
    return self.area['ymax'] - valueInPixels

  def drawLines(self, width=None, dash=None, linecap='butt', linejoin='miter'):
    if not width: width = self.lineWidth
    self.ctx.set_line_width(width)
    originalWidth = width
    width = float(int(width) % 2) / 2
    if dash:
      self.ctx.set_dash(dash,1)
    else:
      self.ctx.set_dash([],0)
    self.ctx.set_line_cap({
      'butt' : cairo.LINE_CAP_BUTT,
      'round' : cairo.LINE_CAP_ROUND,
      'square' : cairo.LINE_CAP_SQUARE,
    }[linecap])
    self.ctx.set_line_join({
      'miter' : cairo.LINE_JOIN_MITER,
      'round' : cairo.LINE_JOIN_ROUND,
      'bevel' : cairo.LINE_JOIN_BEVEL,
    }[linejoin])

    # check whether there is an stacked metric
    singleStacked = False
    for series in self.data:
      if 'stacked' in series.options:
        singleStacked = True
    if singleStacked:
      self.data = sort_stacked(self.data)

    # stack the values
    if self.areaMode == 'stacked' and not self.secondYAxis: #TODO Allow stacked area mode with secondYAxis
      total = []
      for series in self.data:
        if 'drawAsInfinite' in series.options:
          continue

        series.options['stacked'] = True
        for i in range(len(series)):
          if len(total) <= i: total.append(0)

          if series[i] is not None:
            original = series[i]
            series[i] += total[i]
            total[i] += original
    elif self.areaMode == 'first':
      self.data[0].options['stacked'] = True
    elif self.areaMode == 'all':
      for series in self.data:
        if 'drawAsInfinite' not in series.options:
          series.options['stacked'] = True

    # apply alpha channel and create separate stroke series
    if self.params.get('areaAlpha'):
      try:
        alpha = float(self.params['areaAlpha'])
      except ValueError:
        alpha = 0.5
        pass

      strokeSeries = []
      for series in self.data:
        if 'stacked' in series.options:
          series.options['alpha'] = alpha

          newSeries = TimeSeries(series.name, series.start, series.end, series.step*series.valuesPerPoint, [x for x in series])
          newSeries.xStep = series.xStep
          newSeries.color = series.color
          if 'secondYAxis' in series.options:
            newSeries.options['secondYAxis'] = True
          strokeSeries.append(newSeries)
      self.data += strokeSeries

    # setup the clip region
    self.ctx.set_line_width(1.0)
    self.ctx.rectangle(self.area['xmin'], self.area['ymin'], self.area['xmax'] - self.area['xmin'], self.area['ymax'] - self.area['ymin'])
    self.ctx.clip()
    self.ctx.set_line_width(originalWidth)

    # save clip to restore once stacked areas are drawn
    self.ctx.save()
    clipRestored = False

    for series in self.data:

      if 'stacked' not in series.options:
        # stacked areas are always drawn first. if this series is not stacked, we finished stacking.
        # reset the clip region so lines can show up on top of the stacked areas.
        if not clipRestored:
          clipRestored = True
          self.ctx.restore()

      if 'lineWidth' in series.options:
        self.ctx.set_line_width(series.options['lineWidth'])

      if 'dashed' in series.options:
        self.ctx.set_dash([ series.options['dashed'] ], 1)
      else:
        self.ctx.set_dash([], 0)

      # Shift the beginning of drawing area to the start of the series if the
      # graph itself has a larger range
      missingPoints = (series.start - self.startTime) / series.step
      startShift = series.xStep * (missingPoints / series.valuesPerPoint)
      x = float(self.area['xmin']) + startShift + (self.lineWidth / 2.0)
      y = float(self.area['ymin'])

      startX = x

      if series.options.get('invisible'):
        self.setColor( series.color, 0, True )
      else:
        self.setColor( series.color, series.options.get('alpha') or 1.0 )

      # The number of preceding datapoints that had a None value.
      consecutiveNones = 0

      for index, value in enumerate(series):
        if value != value: # convert NaN to None
          value = None

        if value is None and self.params.get('drawNullAsZero'):
          value = 0.0

        if value is None:
          if consecutiveNones == 0:
            self.ctx.line_to(x, y)
            if 'stacked' in series.options: #Close off and fill area before unknown interval
              if self.secondYAxis:
                if 'secondYAxis' in series.options:
                  self.fillAreaAndClip(x, y, startX, self.getYCoord(0, "right"))
                else:
                  self.fillAreaAndClip(x, y, startX, self.getYCoord(0, "left"))
              else:
                self.fillAreaAndClip(x, y, startX, self.getYCoord(0))

          x += series.xStep
          consecutiveNones += 1

        else:
          if self.secondYAxis:
            if 'secondYAxis' in series.options:
              y = self.getYCoord(value, "right")
            else:
              y = self.getYCoord(value, "left")
          else:
            y = self.getYCoord(value)

          if y is None:
            value = None
          elif y < 0:
              y = 0

          if 'drawAsInfinite' in series.options and value > 0:
            self.ctx.move_to(x, self.area['ymax'])
            self.ctx.line_to(x, self.area['ymin'])
            self.ctx.stroke()
            x += series.xStep
            continue

          if consecutiveNones > 0:
            startX = x

          if self.lineMode == 'staircase':
            if consecutiveNones > 0:
              self.ctx.move_to(x, y)
            else:
              self.ctx.line_to(x, y)

            x += series.xStep
            self.ctx.line_to(x, y)

          elif self.lineMode == 'slope':
            if consecutiveNones > 0:
              self.ctx.move_to(x, y)

            self.ctx.line_to(x, y)
            x += series.xStep

          elif self.lineMode == 'connected':
            # If if the gap is larger than the connectedLimit or if this is the
            # first non-None datapoint in the series, start drawing from that datapoint.
            if consecutiveNones > self.connectedLimit or consecutiveNones == index:
               self.ctx.move_to(x, y)

            self.ctx.line_to(x, y)
            x += series.xStep

          consecutiveNones = 0

      if 'stacked' in series.options:
        if self.lineMode == 'staircase':
          xPos = x
        else:
          xPos = x-series.xStep
        if self.secondYAxis:
          if 'secondYAxis' in series.options:
            areaYFrom = self.getYCoord(0, "right")
          else:
            areaYFrom = self.getYCoord(0, "left")
        else:
          areaYFrom = self.getYCoord(0)

        self.fillAreaAndClip(xPos, y, startX, areaYFrom)

      else:
        self.ctx.stroke()

      self.ctx.set_line_width(originalWidth) # return to the original line width
      if 'dash' in series.options: # if we changed the dash setting before, change it back now
        if dash:
          self.ctx.set_dash(dash,1)
        else:
          self.ctx.set_dash([],0)

  def fillAreaAndClip(self, x, y, startX=None, areaYFrom=None):
    startX = (startX or self.area['xmin'])
    areaYFrom = (areaYFrom or self.area['ymax'])
    pattern = self.ctx.copy_path()

    # fill
    self.ctx.line_to(x, areaYFrom)                  # bottom endX
    self.ctx.line_to(startX, areaYFrom)             # bottom startX
    self.ctx.close_path()
    self.ctx.fill()

    # clip above y axis
    self.ctx.append_path(pattern)
    self.ctx.line_to(x, areaYFrom)                  # yZero endX
    self.ctx.line_to(self.area['xmax'], areaYFrom)  # yZero right
    self.ctx.line_to(self.area['xmax'], self.area['ymin'])  # top right
    self.ctx.line_to(self.area['xmin'], self.area['ymin'])  # top left
    self.ctx.line_to(self.area['xmin'], areaYFrom)  # yZero left
    self.ctx.line_to(startX, areaYFrom)             # yZero startX

    # clip below y axis
    self.ctx.line_to(x, areaYFrom)                  # yZero endX
    self.ctx.line_to(self.area['xmax'], areaYFrom)  # yZero right
    self.ctx.line_to(self.area['xmax'], self.area['ymax'])  # bottom right
    self.ctx.line_to(self.area['xmin'], self.area['ymax'])  # bottom left
    self.ctx.line_to(self.area['xmin'], areaYFrom)  # yZero left
    self.ctx.line_to(startX, areaYFrom)             # yZero startX
    self.ctx.close_path()
    self.ctx.clip()

  def consolidateDataPoints(self):
    numberOfPixels = self.graphWidth = self.area['xmax'] - self.area['xmin'] - (self.lineWidth + 1)
    for series in self.data:
      numberOfDataPoints = self.timeRange/series.step
      minXStep = float( self.params.get('minXStep',1.0) )
      divisor = self.timeRange / series.step
      bestXStep = numberOfPixels / divisor
      if bestXStep < minXStep:
        drawableDataPoints = int( numberOfPixels / minXStep )
        pointsPerPixel = math.ceil( float(numberOfDataPoints) / float(drawableDataPoints) )
        series.consolidate(pointsPerPixel)
        series.xStep = (numberOfPixels * pointsPerPixel) / numberOfDataPoints
      else:
        series.xStep = bestXStep

  def _adjustLimits(self, minValue, maxValue, minName, maxName, limitName):
    if maxName in self.params and self.params[maxName] != 'max':
      maxValue = self.params[maxName]

    if limitName in self.params and self.params[limitName] < maxValue:
      maxValue = self.params[limitName]

    if minName in self.params:
      minValue = self.params[minName]

    if maxValue <= minValue:
      maxValue = minValue + 1

    return (minValue, maxValue)

  def setupYAxis(self):
    (yMinValue, yMaxValue) = dataLimits(self.data,
                                        drawNullAsZero=self.params.get('drawNullAsZero'),
                                        stacked=(self.areaMode == 'stacked'))

    if self.logBase:
      yTics = _LogAxisTics(yMinValue, yMaxValue,
                           unitSystem=self.params.get('yUnitSystem'), base=self.logBase)
    else:
      yTics = _LinearAxisTics(yMinValue, yMaxValue,
                           unitSystem=self.params.get('yUnitSystem'))

    yTics.applySettings(axisMin=self.params.get('yMin'),
                        axisMax=self.params.get('yMax'),
                        axisLimit=self.params.get('yLimit'))

    if 'yStep' in self.params:
      yTics.setStep(self.params['yStep'])
    else:
      yDivisors = str(self.params.get('yDivisors', '4,5,6'))
      yDivisors = [int(d) for d in yDivisors.split(',')]
      binary = self.params.get('yUnitSystem') == 'binary'
      yTics.chooseStep(divisors=yDivisors, binary=binary)

    yTics.chooseLimits()

    # Copy the values we need back out of the yTics object:
    self.yStep = yTics.step
    self.yBottom = yTics.bottom
    self.yTop = yTics.top
    self.ySpan = yTics.span

    if not self.params.get('hideAxes', False):
      #Create and measure the Y-labels

      self.yLabelValues = yTics.getLabelValues()
      self.yLabels = [yTics.makeLabel(value) for value in self.yLabelValues]
      self.yLabelWidth = max([self.getExtents(label)['width'] for label in self.yLabels])

      if not self.params.get('hideYAxis'):
        if self.params.get('yAxisSide') == 'left':
          # Scoot the graph over to the left just enough to fit the y-labels:
          xMin = self.margin + (self.yLabelWidth * 1.02)
          if self.area['xmin'] < xMin:
            self.area['xmin'] = xMin
        else:
          # Scoot the graph over to the right just enough to fit the y-labels:
          xMin = 0
          xMax = self.margin - (self.yLabelWidth * 1.02)
          if self.area['xmax'] >= xMax:
            self.area['xmax'] = xMax
    else:
      self.yLabelValues = []
      self.yLabels = []
      self.yLabelWidth = 0.0

  def setupTwoYAxes(self):
    drawNullAsZero = self.params.get('drawNullAsZero')
    stacked = (self.areaMode == 'stacked')

    (yMinValueL, yMaxValueL) = dataLimits(self.dataLeft, drawNullAsZero, stacked)
    (yMinValueR, yMaxValueR) = dataLimits(self.dataRight, drawNullAsZero, stacked)

    # TODO: Allow separate bases for L & R Axes.
    if self.logBase:
      yTicsL = _LogAxisTics(yMinValueL, yMaxValueL,
                            unitSystem=self.params.get('yUnitSystem'), base=self.logBase)
      yTicsR = _LogAxisTics(yMinValueR, yMaxValueR,
                            unitSystem=self.params.get('yUnitSystem'), base=self.logBase)
    else:
      yTicsL = _LinearAxisTics(yMinValueL, yMaxValueL,
                               unitSystem=self.params.get('yUnitSystem'))
      yTicsR = _LinearAxisTics(yMinValueR, yMaxValueR,
                               unitSystem=self.params.get('yUnitSystem'))

    yTicsL.applySettings(axisMin=self.params.get('yMinLeft'),
                         axisMax=self.params.get('yMaxLeft'),
                         axisLimit=self.params.get('yLimitLeft'))
    yTicsR.applySettings(axisMin=self.params.get('yMinRight'),
                         axisMax=self.params.get('yMaxRight'),
                         axisLimit=self.params.get('yLimitRight'))

    yDivisors = str(self.params.get('yDivisors', '4,5,6'))
    yDivisors = [int(d) for d in yDivisors.split(',')]
    binary = self.params.get('yUnitSystem') == 'binary'

    if 'yStepLeft' in self.params:
      yTicsL.setStep(self.params['yStepLeft'])
    else:
      yTicsL.chooseStep(divisors=yDivisors, binary=binary)

    if 'yStepRight' in self.params:
      yTicsR.setStep(self.params['yStepRight'])
    else:
      yTicsR.chooseStep(divisors=yDivisors, binary=binary)

    yTicsL.chooseLimits()
    yTicsR.chooseLimits()

    # Copy the values we need back out of the yTics objects:
    self.yStepL = yTicsL.step
    self.yBottomL = yTicsL.bottom
    self.yTopL = yTicsL.top
    self.ySpanL = yTicsL.span

    self.yStepR = yTicsR.step
    self.yBottomR = yTicsR.bottom
    self.yTopR = yTicsR.top
    self.ySpanR = yTicsR.span

    #Create and measure the Y-labels
    self.yLabelValuesL = yTicsL.getLabelValues()
    self.yLabelValuesR = yTicsR.getLabelValues()

    self.yLabelsL = [yTicsL.makeLabel(value) for value in self.yLabelValuesL]
    self.yLabelsR = [yTicsR.makeLabel(value) for value in self.yLabelValuesR]

    self.yLabelWidthL = max([self.getExtents(label)['width'] for label in self.yLabelsL])
    self.yLabelWidthR = max([self.getExtents(label)['width'] for label in self.yLabelsR])
    #scoot the graph over to the left just enough to fit the y-labels

    #xMin = self.margin + self.margin + (self.yLabelWidthL * 1.02)
    xMin = self.margin + (self.yLabelWidthL * 1.02)
    if self.area['xmin'] < xMin:
      self.area['xmin'] = xMin
    #scoot the graph over to the right just enough to fit the y-labels
    xMax = self.width - (self.yLabelWidthR * 1.02)
    if self.area['xmax'] >= xMax:
      self.area['xmax'] = xMax

  def setupXAxis(self):
    if self.userTimeZone:
      tzinfo = pytz.timezone(self.userTimeZone)
    else:
      tzinfo = pytz.timezone(settings.TIME_ZONE)

    self.start_dt = datetime.fromtimestamp(self.startTime, tzinfo)
    self.end_dt = datetime.fromtimestamp(self.endTime, tzinfo)

    secondsPerPixel = float(self.timeRange) / float(self.graphWidth)
    self.xScaleFactor = float(self.graphWidth) / float(self.timeRange) #pixels per second

    potential = [c for c in xAxisConfigs if c['seconds'] <= secondsPerPixel and c.get('maxInterval', self.timeRange + 1) >= self.timeRange]
    if potential:
      self.xConf = potential[-1]
    else:
      self.xConf = xAxisConfigs[-1]

    self.xLabelStep = self.xConf['labelUnit'] * self.xConf['labelStep']
    self.xMinorGridStep = self.xConf['minorGridUnit'] * self.xConf['minorGridStep']
    self.xMajorGridStep = self.xConf['majorGridUnit'] * self.xConf['majorGridStep']

  def drawLabels(self):
    # Draw the Y-labels
    if not self.params.get('hideYAxis'):
      if not self.secondYAxis:
        for value,label in zip(self.yLabelValues,self.yLabels):
          if self.params.get('yAxisSide') == 'left':
            x = self.area['xmin'] - (self.yLabelWidth * 0.02)
          else:
            x = self.area['xmax'] + (self.yLabelWidth * 0.02) #Inverted for right side Y Axis

          y = self.getYCoord(value)
          if y is None:
              value = None
          elif y < 0:
              y = 0

          if self.params.get('yAxisSide') == 'left':
            self.drawText(label, x, y, align='right', valign='middle')
          else:
            self.drawText(label, x, y, align='left', valign='middle') #Inverted for right side Y Axis
      else: # Draws a right side and a Left side axis
        for valueL,labelL in zip(self.yLabelValuesL,self.yLabelsL):
          xL = self.area['xmin'] - (self.yLabelWidthL * 0.02)
          yL = self.getYCoord(valueL, "left")
          if yL is None:
            value = None
          elif yL < 0:
            yL = 0
          self.drawText(labelL, xL, yL, align='right', valign='middle')

          ### Right Side
        for valueR,labelR in zip(self.yLabelValuesR,self.yLabelsR):
          xR = self.area['xmax'] + (self.yLabelWidthR * 0.02) + 3 #Inverted for right side Y Axis
          yR = self.getYCoord(valueR, "right")
          if yR is None:
            valueR = None
          elif yR < 0:
            yR = 0
          self.drawText(labelR, xR, yR, align='left', valign='middle') #Inverted for right side Y Axis

    if not self.params.get('hideXAxis'):
      (dt, x_label_delta) = find_x_times(self.start_dt, self.xConf['labelUnit'], self.xConf['labelStep'])

      # Draw the X-labels
      xFormat = self.params.get('xFormat', self.xConf['format'])
      while dt < self.end_dt:
        label = dt.strftime(xFormat)
        x = self.area['xmin'] + (toSeconds(dt - self.start_dt) * self.xScaleFactor)
        y = self.area['ymax'] + self.getExtents()['maxAscent']
        self.drawText(label, x, y, align='center', valign='top')
        dt += x_label_delta

  def drawGridLines(self):
    # Not sure how to handle this for 2 y-axes
    # Just using the left side info for the grid.

    # Horizontal grid lines
    leftSide = self.area['xmin']
    rightSide = self.area['xmax']
    labels = []
    if self.secondYAxis:
      labels = self.yLabelValuesL
    else:
      labels = self.yLabelValues

    for i, value in enumerate(labels):
      self.ctx.set_line_width(0.4)
      self.setColor( self.params.get('majorGridLineColor',self.defaultMajorGridLineColor) )

      if self.secondYAxis:
        y = self.getYCoord(value,"left")
      else:
        y = self.getYCoord(value)

      if y is None or y < 0:
          continue
      self.ctx.move_to(leftSide, y)
      self.ctx.line_to(rightSide, y)
      self.ctx.stroke()

      # draw minor gridlines if this isn't the last label
      if self.minorY >= 1 and i < (len(labels) - 1):
        # in case graphite supports inverted Y axis now or someday
        (valueLower, valueUpper) = sorted((value, labels[i+1]))

        # each minor gridline is 1/minorY apart from the nearby gridlines.
        # we calculate that distance, for adding to the value in the loop.
        distance = ((valueUpper - valueLower) / float(1 + self.minorY))

        # starting from the initial valueLower, we add the minor distance
        # for each minor gridline that we wish to draw, and then draw it.
        for minor in range(self.minorY):
          self.ctx.set_line_width(0.3)
          self.setColor( self.params.get('minorGridLineColor',self.defaultMinorGridLineColor) )

          # the current minor gridline value is halfway between the current and next major gridline values
          value = (valueLower + ((1+minor) * distance))

          if self.logBase:
            yTopFactor = self.logBase * self.logBase
          else:
            yTopFactor = 1

          if self.secondYAxis:
            if value >= (yTopFactor * self.yTopL):
              continue
          else:
            if value >= (yTopFactor * self.yTop):
              continue

          if self.secondYAxis:
            y = self.getYCoord(value,"left")
          else:
            y = self.getYCoord(value)
          if y is None or y < 0:
              continue

          self.ctx.move_to(leftSide, y)
          self.ctx.line_to(rightSide, y)
          self.ctx.stroke()

    # Vertical grid lines
    top = self.area['ymin']
    bottom = self.area['ymax']

    # First we do the minor grid lines (majors will paint over them)
    self.ctx.set_line_width(0.25)
    self.setColor( self.params.get('minorGridLineColor',self.defaultMinorGridLineColor) )
    (dt, x_minor_delta) = find_x_times(self.start_dt, self.xConf['minorGridUnit'], self.xConf['minorGridStep'])

    while dt < self.end_dt:
      x = self.area['xmin'] + (toSeconds(dt - self.start_dt) * self.xScaleFactor)

      if x < self.area['xmax']:
        self.ctx.move_to(x, bottom)
        self.ctx.line_to(x, top)
        self.ctx.stroke()

      dt += x_minor_delta

    # Now we do the major grid lines
    self.ctx.set_line_width(0.33)
    self.setColor( self.params.get('majorGridLineColor',self.defaultMajorGridLineColor) )
    (dt, x_major_delta) = find_x_times(self.start_dt, self.xConf['majorGridUnit'], self.xConf['majorGridStep'])

    while dt < self.end_dt:
      x = self.area['xmin'] + (toSeconds(dt - self.start_dt) * self.xScaleFactor)

      if x < self.area['xmax']:
        self.ctx.move_to(x, bottom)
        self.ctx.line_to(x, top)
        self.ctx.stroke()

      dt += x_major_delta

    # Draw side borders for our graph area
    self.ctx.set_line_width(0.5)
    self.ctx.move_to(self.area['xmax'], bottom)
    self.ctx.line_to(self.area['xmax'], top)
    self.ctx.move_to(self.area['xmin'], bottom)
    self.ctx.line_to(self.area['xmin'], top)
    self.ctx.stroke()


class PieGraph(Graph):
  customizable = Graph.customizable + \
                 ('title','valueLabels','valueLabelsMin','hideLegend','pieLabels','areaAlpha','valueLabelsColor')
  validValueLabels = ('none','number','percent')

  def drawGraph(self,**params):
    self.pieLabels = params.get('pieLabels', 'horizontal')
    self.total = sum( [t[1] for t in self.data] )

    if not self.data:
      x = self.width / 2
      y = self.height / 2
      self.setColor('red')
      self.setFont(size=math.log(self.width * self.height) )
      self.drawText("No Data", x, y, align='center')
      return

    if self.params.get('areaAlpha'):
      try:
        self.alpha = float(self.params['areaAlpha'])
      except ValueError:
        self.alpha = 1.0
        pass
    else:
      self.alpha = 1.0

    self.slices = []
    for name,value in self.data:
      self.slices.append({
        'name' : name,
        'value' : value,
        'percent' : value / self.total,
        'color' : next(self.colors),
        'alpha' : self.alpha,
      })

    titleSize = self.defaultFontParams['size'] + math.floor( math.log(self.defaultFontParams['size']) )
    self.setFont( size=titleSize )
    self.setColor( self.foregroundColor )
    if params.get('title'):
      self.drawTitle( unquote_plus(params['title']) )
    self.setFont()

    if not params.get('hideLegend',False):
      elements = [ (slice['name'],slice['color'],None) for slice in self.slices ]
      if len(elements) > 0:
        self.drawLegend(elements)

    self.drawSlices()

    if params.get('valueLabelsColor'):
      self.valueLabelsColor = params.get('valueLabelsColor')
    else:
      self.valueLabelsColor = 'black'

    self.valueLabelsMin = float( params.get('valueLabelsMin',5) )
    self.valueLabels = params.get('valueLabels','percent')
    assert self.valueLabels in self.validValueLabels, \
        "valueLabels=%s must be one of %s" % (self.valueLabels,self.validValueLabels)
    if self.valueLabels != 'none':
      self.drawLabels()

  def drawSlices(self):
    theta = 3.0 * math.pi / 2.0
    halfX = (self.area['xmax'] - self.area['xmin']) / 2.0
    halfY = (self.area['ymax'] - self.area['ymin']) / 2.0
    self.x0 = x0 = self.area['xmin'] + halfX
    self.y0 = y0 = self.area['ymin'] + halfY
    self.radius = radius = min(halfX,halfY) * 0.95
    for slice in self.slices:
      self.setColor( slice['color'], slice['alpha'] )
      self.ctx.move_to(x0,y0)
      phi = theta + (2 * math.pi) * slice['percent']
      self.ctx.arc( x0, y0, radius, theta, phi )
      self.ctx.line_to(x0,y0)
      self.ctx.fill()
      slice['midAngle'] = (theta + phi) / 2.0
      slice['midAngle'] %= 2.0 * math.pi
      theta = phi

  def drawLabels(self):
    self.setFont()
    self.setColor( self.valueLabelsColor )
    for slice in self.slices:
      if self.valueLabels == 'percent':
        if (slice['percent'] * 100.0) < self.valueLabelsMin: continue
        label = "%%%.2f" % (slice['percent'] * 100.0)
      elif self.valueLabels == 'number':
        if slice['value'] < self.valueLabelsMin: continue
        if slice['value'] < 10 and slice['value'] != int(slice['value']):
          label = "%.2f" % slice['value']
        else:
          label = six.text_type(int(slice['value']))
      theta = slice['midAngle']
      x = self.x0 + (self.radius / 2.0 * math.cos(theta))
      y = self.y0 + (self.radius / 2.0 * math.sin(theta))

      if self.pieLabels == 'rotated':
        if theta > (math.pi / 2.0) and theta <= (3.0 * math.pi / 2.0):
          theta -= math.pi
        self.drawText( label, x, y, align='center', valign='middle', rotate=math.degrees(theta) )
      else:
        self.drawText( label, x, y, align='center', valign='middle')


GraphTypes = {
  'line' : LineGraph,
  'pie' : PieGraph,
}


# Convenience functions
def toSeconds(t):
  return (t.days * 86400) + t.seconds


def safeArgs(args):
  """Iterate over valid, finite values in an iterable.

  Skip any items that are None, NaN, or infinite.
  """

  return (arg for arg in args
          if arg is not None and not math.isnan(arg) and not math.isinf(arg))


def safeMin(args):
  args = list(safeArgs(args))
  if args:
    return min(args)


def safeMax(args):
  args = list(safeArgs(args))
  if args:
    return max(args)


def safeSum(values):
  return sum(safeArgs(values))


def any(args):
  for arg in args:
    if arg:
      return True
  return False


def dataLimits(data, drawNullAsZero=False, stacked=False):
  """Return the range of values in data as (yMinValue, yMaxValue).

  data is an array of TimeSeries objects.
  """

  missingValues = any(None in series for series in data)
  finiteData = [series for series in data if not series.options.get('drawAsInfinite')]

  yMinValue = safeMin(safeMin(series) for series in finiteData)

  if yMinValue is None:
    # This can only happen if there are no valid, non-infinite data.
    return (0.0, 1.0)

  if yMinValue > 0.0 and drawNullAsZero and missingValues:
    yMinValue = 0.0

  if stacked:
    length = safeMin(len(series) for series in finiteData)
    sumSeries = []

    for i in range(0, length):
      sumSeries.append( safeSum(series[i] for series in finiteData) )
    yMaxValue = safeMax( sumSeries )
  else:
    yMaxValue = safeMax(safeMax(series) for series in finiteData)

  if yMaxValue < 0.0 and drawNullAsZero and missingValues:
    yMaxValue = 0.0

  return (yMinValue, yMaxValue)


def sort_stacked(series_list):
  stacked = [s for s in series_list if 'stacked' in s.options]
  not_stacked = [s for s in series_list if 'stacked' not in s.options]
  return stacked + not_stacked


def format_units(v, step=None, system='si', units=None):
  """Format the given value in standardized units.

  ``system`` is either 'binary' or 'si'

  For more info, see:
    http://en.wikipedia.org/wiki/SI_prefix
    http://en.wikipedia.org/wiki/Binary_prefix
  """

  if v is None:
    return v, ''

  if step is None:
    condition = lambda size: abs(v) >= size
  else:
    condition = lambda size: abs(v) >= size and step >= size

  for prefix, size in UnitSystems[system]:
    if condition(size):
      v2 = v / size
      if (v2 - math.floor(v2)) < 0.00000000001 and v > 1:
        v2 = float(math.floor(v2))
      if units:
        prefix = "%s%s" % (prefix, units)
      return v2, prefix

  if (v - math.floor(v)) < 0.00000000001 and v > 1 :
    v = float(math.floor(v))
  if units:
    prefix = units
  else:
    prefix = ''
  return v, prefix


def find_x_times(start_dt, unit, step):
  if not isinstance(start_dt, datetime):
    raise ValueError("Invalid start_dt: %s" % start_dt)
  if not isinstance(step, int) or not step > 0:
    if not isinstance(step, float) or unit != DAY or not step > 0.0:
      raise ValueError("Invalid step value: %s" % step)

  if unit == SEC:
    dt = start_dt.replace(second=start_dt.second - (start_dt.second % step))
    x_delta = timedelta(seconds=step)

  elif unit == MIN:
    dt = start_dt.replace(second=0, minute=start_dt.minute - (start_dt.minute % step))
    x_delta = timedelta(minutes=step)

  elif unit == HOUR:
    dt = start_dt.replace(second=0, minute=0, hour=start_dt.hour - (start_dt.hour % step))
    x_delta = timedelta(hours=step)

  elif unit == DAY:
    dt = start_dt.replace(second=0, minute=0, hour=0)
    x_delta = timedelta(days=step)

  else:
    raise ValueError("Invalid unit: %s" % unit)

  while dt < start_dt:
    dt += x_delta

  return (dt, x_delta)